镉胁迫下水生动物的生物标志物研究进展

您所在的位置:网站首页 威尼斯的标志物是什么动物呢图片 镉胁迫下水生动物的生物标志物研究进展

镉胁迫下水生动物的生物标志物研究进展

2024-07-16 23:23:55| 来源: 网络整理| 查看: 265

镉(cadmium,Cd)是水生动物生长和发育的非必需元素,对其具有潜在危害[1]。进入生物体内的镉离子主要通过结合活性酶或膜蛋白位点与必需金属竞争来发挥毒性[2-4]。自然环境中的镉主要来源于地壳运动、岩石风化、火山活动或富镉土壤浸出等自然因素,以及采矿、冶炼、生产和使用镍镉电池等人为活动[5]。镉离子易通过摄食、呼吸和吸附作用被生物利用,累积在水体沉积物中和底栖水生生物体内造成急性和慢性中毒,影响生物生存,并通过食物链的富集作用可能引发人类肺、前列腺和肾脏慢性疾病[2, 6-8]。20世纪末,镉及其化合物被国际癌症研究机构(International Agency for Research on Cancer,IARC)列为确定的人类致癌物(carcinogenic to humans),属于Ⅰ类致癌物[9-11]。

水生动物作为水生态系统的重要组成部分,可以对环境中的重金属污染做出响应,金属胁迫下水生动物的生理、生化相关指标可作为评价重金属污染响应的生物标志物[12]。生物标志物通过指示分子、细胞和组织水平结构或功能的改变,可表征生物体所处的污染状态。

化学分析方法可定量检测生物体内重金属含量,但无法反映重金属对生物的毒性效应。为了解这些生物效应,需从生物整体、组织、分子水平研究重金属污染作用下水生动物体内各项代谢指标的变化。笔者总结了镉污染条件下水生动物体内生物标志物的研究进展,以期为研究镉对水生动物的毒害作用提供参考,并从中筛选出合适的生物指标来评价水体重金属污染状况。

1 生物标志物概述 1.1 生物标志物定义

生物标志物(biomarker)是从生物细胞和组织中检测到的在生化、生理或遗传分子等方面发生异常变化的信号指标,可用于判断污染物是否作用于生物个体。生物标志物的突出特征主要表现为可被定量测定,能够直接以生物靶为反应终点,具有敏感性和特异性,对污染物的早期预警性强,且测定值与真实剂量的生物化学机制及毒性效应相关[13-15]。

1.2 生物标志物分类

生物标志物主要涉及暴露生物标志物(exposure biomarkers)、毒性效应生物标志物(toxic effect biomarkers)和易感性生物标志物(susceptibility biomarkers)3个方面[16-17]。暴露生物标志物通过测定组织中特定污染物或其代谢物,或与内源性物质的反应产物来监测环境金属污染物[18]。暴露生物标志物又分为内部剂量标志物和生物学有效剂量标志物。内部剂量标志物是在生物体内测定的特定污染物及其代谢物含量;生物学有效剂量标志物是指特定污染物及其代谢物与重要的细胞、组织等靶结构相互作用形成的反应产物含量[17]。毒性效应生物标志物是指生物体因暴露外源污染物引起的靶细胞或组织的生物学改变[19]。易感性生物标志物是指由于遗传多样机体对毒物产生效应的差异,如基因多态性就是一种易感性生物标志物[15]。

2 镉胁迫的主要生物标志物 2.1 暴露标志物

环境中的镉在进入生物体内各组织器官后才会产生毒害效果。水生动物吸收和积累金属离子方式包括:鳃吸收溶解的金属离子,经循环系统转移到其他器官;或摄取食物直接进入消化系统。镉通过以上2种途径与必需营养物质结合穿过细胞膜进入水生动物体内[20],并通过食物链富集对其他物种包括人类构成较高的毒性风险[21]。

水环境中镉暴露剂量的增加及暴露时间的延长会引起镉蓄积量的增加,蓄积量可作为环境中镉污染的暴露标志物,且蓄积情况随着地理环境、生物种类的不同而有所差异。陈璐璐等[22]对太湖动物体内镉暴露水平进行监测,发现东部沿岸区镉暴露浓度值最小,竺山湖区浓度值最大,全湖平均值低于竺山湖区和西部沿岸的暴露水平。水生动物的生活习性决定了镉吸收富集的差异性,一般认为,贝类和甲壳类大多栖息在水体底层,主要以底泥物质为食,它们体内镉的平均含量明显高于食物链更高营养级的鱼类[23]。秦春艳等[24]对珠江口伶仃洋海域的部分水生动物体内镉含量进行测定,发现各种生物对镉的富集能力由大到小依次为双壳类、头足类、甲壳类和鱼类,其中,七丝鲚的镉含量最低,近江牡蛎的镉积累能力最强。

同种生物不同组织对镉的蓄积有一定影响。由于特殊的生存环境以及生理结构,大多数水生动物通过鳃吸收重金属,普遍认为鳃组织具有短暂的重金属贮存功能,是累积重金属最多的器官[25]。对淡水罗氏沼虾不同组织内低浓度镉的生物蓄积量监测发现组织内镉的蓄积水平由高到低依次为鳃、肝和腹部肌肉[26],鳃组织的血淋巴将镉逐步转移到肝脏中,镉暴露下肝组织内镉可完全被金属硫蛋白结合并进行解毒,而鳃不能,致使鳃组织中镉含量最高,继而肝脏上皮细胞分化促使金属离子转移到其他部位,其中腹部肌肉的收缩蛋白对钙离子具有高亲和性,对其他金属表现出较低的亲和力,因此腹部肌肉中镉累积量最少[27];镉诱导华溪蟹的研究得到了类似结果[25]。有研究指出肝脏是鱼类微量金属元素最终的贮存器官[28],如雌性淡水食蚊鱼肝脏细胞膜组分中镉含量明显高于卵黄囊组织中含量[29],可能的原因是镉作用于垂体和性腺,改变促性腺激素的分泌和类固醇激素的活性,雌性硬骨鱼类卵黄发育过程中,肝脏的代谢需求量非常大,肝脏细胞质组分中的金属硫蛋白的合成与贮存增加以清除重金属离子,而这种附加的代谢活动可能最终损害卵黄,抑制卵黄原蛋白的表达,导致卵黄囊重金属累积相对较少[30];但金头鲷镉积累研究表明鳃内镉水平明显高于肝脏、肌肉,这是因为硬骨鱼类鳃表面的非特异性糖蛋白能结合镉离子,并抑制其他组织对镉的吸收[31]。低浓度镉暴露条件下鳎鱼肾组织中被检测出镉蓄积量最高,其后依次是肝、脾,与水环境直接接触的鳃和皮肤受到的影响最小,其原因是镉最早聚积在肝脏中,然后被运到肾脏,但金属硫蛋白很容易被肾小球排出并由肾小管重吸收,致使肾组织中镉含量最高,肾脏释放的镉离子最后进入组织的上皮细胞[32]。水生动物组织内镉蓄积量见表 1[25-26, 29, 31-37]。

尽管测定的镉水平能够直接指示环境镉污染的程度,但镉在生物体内的蓄积情况受不同生物种类和非生物环境条件等多种因素的影响[18]。环境监测还应考虑水生动物的游动性,特别是鱼类等,以及种群的人为引入等问题,镉对环境的响应关系还有待进一步的探讨。因此,应用镉检测结果监测水环境污染时,需要选择代表性较强的敏感生物,例如,海洋贻贝[38-40]、溞类[6, 41]、水丝蚓[42]等被认为是较好的环境污染预警监测生物,且选定易于蓄积残留镉的组织,如鳃[33-34]、肝胰脏[29]等进行测定。

表 1 Table 1 表 1 水生动物组织内镉蓄积量 Table 1 Cadmium accumulation in tissues of aquatic animals 水生动物种类ρ(镉)/(μg·L-1)暴露时间暴露条件组织内镉蓄积量排序文献 温度/℃ρ(溶解氧)/(mg·L-1)盐度pH值 马尼拉蛤(Venerupis philippinarum)4、4035 d19~207.8~8.6(28.2~29.5)‰7.8~8.1鳃丝>消化腺[33] 紫贻贝(Mytilus edulis)201、4、8 d14.8±0.1(98.1±0.3)%(30.8±0.007)‰7.7±0.01鳃>消化腺>性腺>淋巴[34] 淡水罗氏沼虾(Macrobrachium sintangese)307 d28~295.9~6.2—7.6~8.1鳃>肝>腹部肌肉[26] 谷甾醇对日本对虾〔Penaeus(Marsupenaeus)japonicus〕200、2 000、4 00015、4、4 d25±1—(37±1)‰—鳃丝>肝>上肢[35] 华溪蟹(Sinopotamon henanense)1 000、5 0000、4、10、16、22 d14~186—6.8鳃>肝胰脏[25] 中华绒螯蟹(Eriocheir sinensis)5030 d14.4±0.37.8±1.0—8.2±0.3鳃>肝胰腺>甲壳>肌肉[36] 金头鲷(Sparus aurata)10011 d12—30‰—鳃>肝>肌肉[31] 淡水食蚊鱼(Gambusia affinis)40056 d——0.9‰7.09肝脏>卵黄囊[29] 鳎鱼(Senegalese soles)0.5、5、1028 d19—30%~31%7.7±0.2肾>肝>脾>鳃>皮肤[32] 鲤鱼(Cyprinus carpio)1509 d19~227.0~7.5—6.95±7.20血液>肝脏>肾脏>腮丝>肌肉[37] “—”表示无数据。 表 1 水生动物组织内镉蓄积量 Table 1 Cadmium accumulation in tissues of aquatic animals 2.2 毒性效应标志物 2.2.1 抗氧化生物标志物

镉是非氧化还原活性金属,当镉积累率超过水生动物的排放和解毒能力时,它可以间接引发氧化应激并产生大量氧自由基,进而导致脂质过氧化作用,造成生物系统氧化损伤,引发多种病理改变甚至细胞死亡[43-45]。为响应活性氧引发的细胞损伤,生物体形成了一套抗氧化防御系统,如酶抗氧化系统的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX),以及非酶抗氧化系统的谷胱甘肽、锌、硒、维生素E、抗坏血酸、β-胡萝卜素等,都可以清除脂质过氧化产物,抑制活性氧自由基形成,保护大分子免受氧化损伤[46-47]。

各种有关金属镉引起氧化应激的研究表明,镉可以诱导动物组织抗氧化酶活性改变[48-51]。研究发现,随着镉浓度的增加和暴露时间的延长,华溪蟹肝胰腺细胞线粒体、消化系统和副性腺中SOD活性均表现出先上升后降低趋势[51-53],这与大型蚤、厚壳贻贝鳃组织、鲂幼鱼的毒性实验研究结果[39, 54-55]相似。将骨螺暴露于不同浓度镉污染物中测定产卵前后不同阶段消化腺内CAT活性变化,发现镉结合蛋白质的巯基破坏了消化腺细胞结构,促使CAT含量增加[49]。镉胁迫作用下厚壳贻贝、鱼类肝脏内GPX活性与镉暴露呈剂量-效应关系[39-56],这些数据表明镉暴露促使生物体抗氧化系统参数发生显著变化。

随着镉离子浓度的升高,过氧化脂质的生成随之增加,抗氧化系统诱导SOD、CAT活性不断上升,加速分解过氧化物,随之刺激GPX分解过氧化物,从而刺激活性氧自由基的生成,进一步间接诱导SOD、CAT活性[57]。因此,镉污染作用下抗氧化酶活性的改变趋势不能概化,如镉胁迫下贻贝抗氧化酶家族中的GPX和CAT活性增加,而SOD活性无显著变化[58];金头鲷肝脏中GPX活性则呈下降趋势[31]。即使大多数镉诱导的氧化应激都会使水生生物组织的抗氧化酶活性水平显著增加,但因过氧化脂质量随之增加不能及时被清除,抗氧化酶水平的增加不足以抵御氧化应激[59-60]。

一些非酶抗氧化物质对镉暴露导致的多器官毒性也具有保护作用,可以通过疏基基团与活性氧直接作用运输和消除活性化合物,间接发挥抗氧化功能,保护器官免受氧化应激,在调节镉诱导的脂质过氧化过程中起着重要作用[61]。锌和硒能辅助酶抗氧化系统修复氧化损伤,当向实验生物投喂含锌或富硒食物时,生物体内抗氧化酶活性趋于正常,两者同时供应可以明显减少受试生物组织器官对镉的吸收,因此推断锌和硒对镉诱导的氧化应激具有保护作用[62-63]。脂质过氧化终产物丙二醛与各种细胞成分发生反应,影响线粒体内关键酶活性,造成酶和膜严重损坏,可作为氧化损伤指标[48, 64-65]。有研究发现,迫于环境污染物镉压力,水生动物会采取细胞和分子水平的自噬防御机制来清除氧化受损的细胞器和蛋白,预先缓解镉诱导的氧化应激,因此,一些水生动物的自噬反应可作为毒性效应标志物监测生态系统健康[66]。

各种酶活性及非酶物质的明显改变可以说明,利用氧化应激相关生物标志物来有效监测镉污染具有可行性。但应当注意的是,应用抗氧化酶生物标志物对镉污染进行早期预警时,必须考虑不同种属间的个体差异、同种生物的不同生长发育时期以及不同组织器官等可能对检测结果造成的影响,为此,监测过程应当综合考虑多种因素的影响,以确保检测结果的真实性[18]。

2.2.2 特异性基因标志物

镉离子进入细胞参与跨细胞膜运动,会干扰基因表达和DNA修复,从而干扰细胞的稳态和功能。氧化应激、神经毒性和内分泌干扰效应等不同作用机制可以表现为相应的基因表达变化,可将一些特异性表达的基因视为分子生物标志物。研究发现编码抗氧化蛋白的mRNA丰度改变时,相关的酶活性也会发生改变,例如镉胁迫下骨螺肝脏、卵巢中金属硫蛋白、CAT、SOD和GPX的转录显著增加[67];硫酸镉与α-萘黄酮的联合毒性会引起斑马鱼胚胎耐药相关蛋白MRP和细胞色素P450(CYP)的mRNA水平显著下调,导致SOD活性被显著抑制[64]。各种实验已经完成对斑马鱼、金头鲷的研究,结果均显示镉的毒性是由CYP的表达抑制以及产生氧化应激引起的[68-70]。测定镉对底栖寡毛类蠕虫、水稻鳃蚯蚓、颡鱼幼鱼和胡鲶的急性毒性作用,发现较高浓度镉暴露72和96 h,观察到4种动物体表黏液分泌过多,随时间的延长和浓度的提高,颡鱼幼鱼和胡鲶出现自发运动增多、身体失衡、呼吸困难等行为变化,表明镉具有神经系统毒性[71]。低剂量氯化镉持续暴露影响斑马鱼幼鱼的神经发育,具体表现为幼鱼轨迹紊乱、刻板式转向运动增加、原地震颤等状态,且运动距离与镉暴露浓度关系呈剂量依赖性的倒“U”型,光照惊恐反射实验中,幼鱼对突发的光暗变化表现敏感或迟钝[72]。生物体基因表达的异常最终会引起生理层面的改变,关于镉对罗非鱼类固醇激素相关基因的表达影响研究表明,镉毒性具有母系转移特点,处理组雌性激素基因表达均上调,引起卵泡畸形,卵巢发育迟滞,而雄性鱼类没有显著变化;已孕罗非鱼的卵黄原蛋白表达明显下调,无法为胚胎提供氨基酸、脂肪、碳水化合物、维生素和微量元素等营养功能性物质[73]。以上基因表达异常控制的生理活动改变表明镉污染对水生生物具有毒性作用。

2.2.3 遗传毒性标志物

遗传毒性标志物可在分子水平上直接揭示有毒污染物的毒性作用机制和由此引发的细胞及个体水平上的破坏,具有专一性、特异性和广泛适用性,可直接揭示毒性效应的分子反应机理,并通过相关生物标志物揭示组织结构发生的变化,因此,可将DNA损伤视为镉污染的生物标志物。

环境压力胁迫下(如重金属镉污染等)生物体内DNA损伤的主要表现形式为碱基改变、DNA结构破坏、甲基化损伤和DNA交联等,它们对细胞产生遗传毒性或细胞毒性,导致生殖细胞致死突变、畸形和遗传缺陷等[74]。刘建博等[75]观察不同浓度镉离子染毒5 d后的精子染色体装片,发现远低于半致死浓度的镉离子虽未直接造成文蛤死亡,但明显破坏精子DNA完整性,且随浓度的升高,完整性下降趋势逐渐减慢并趋于平稳,说明镉离子对DNA完整性已造成极严重的破坏。曹哲明等[76]发现镉胁迫下鲤鱼基因组存在DNA甲基化现象,且与镉离子处理时间及浓度有关,且幼鱼暴露于不同浓度组试剂中均未出现个体死亡,值得注意的是,急性试验中甲基化位点的改变不一定同时引起DNA损伤,低浓度处理下鲤鱼甲基化水平较低,高浓度条件下甲基化区域发生显著变化,可能导致相应基因的表达异常。这些遗传毒性结果证实镉污染虽未诱导生物生理上的直接破坏,但可对基因表达造成一定程度的干扰。陆慧贤等[77]以缢蛏的消化腺和鳃2种组织细胞为试验对象,应用彗星试验检测水体遗传毒性效应,发现暴露期间DNA损伤程度呈先上升后降低趋势,且同一处理组鳃组织细胞DNA损伤程度高于消化腺细胞,随时间的延长,在组织内抗氧化酶的作用下DNA损伤得到一定程度的修复,因此,将DNA损伤作为镉污染监测指标时应考虑其他生态毒理学指标的影响。

以往急性毒理实验研究中所采用的生物标志物均建立在细胞和生理层面上,虽然可以定量检测水环境中镉污染的毒性效应,但对基因表达层面干扰作用的研究还较少,遗传毒性生物标志物的探索将会成为以后重金属毒性研究的重点。

2.2.4 乙酰胆碱酯酶(acetyl cholinesterase,AChE)

AChE是大多数物种的感觉和神经肌肉系统之间的主要神经传递素,AChE的干扰可能妨碍神经或肌肉纤维的正常通信。一些研究表明,显著抑制AChE活性的污染物包括重金属[78-79],因此,水生动物体内的AChE活性可能是用于环境重金属污染物检测的一个潜在的生物标志物。但不是所有金属胁迫都会对AChE产生抑制作用,例如桡足类日本虎斑猛水溞暴露于镉的生化反应的实验研究发现,经过一定的曝光时间,镉明显提高AChE活性,这与酶活性受到抑制的结论存在分歧,因此,可以推断生物标志物的反应可能与物种有关[80]。

部分研究指出,镉离子抑制和激活AChE活性与生物体内金属胁迫相关响应酶的变化有关。例如,随暴露浓度及暴露时间的增加,银鲶鱼大脑和肌肉中AChE活性均呈现下降趋势,同时,脑中硫代巴比妥酸反应物质(TBARS)含量增加,14 d后,发现脑中AChE活性得到恢复,而鱼肌肉内无明显变化,脑中AChE活性抑制状态的解除可能与TBARS水平的增加[81]有关。比较2种重金属对罗非鱼脑和肌肉胆碱酯抑制潜力的研究发现,高浓度镉或铜对胆碱酯的抑制作用比低浓度镉或铜更大,且脑组织比肌肉组织更敏感,且随着暴露时间的延长,镉诱导的酶抑制作用逐渐降低或丧失,可以推测镉诱导作用下鱼体内产生的金属硫蛋白缓解了镉对胆碱酯的抑制效果[82]。

综合上述结果可以推断,镉胁迫下水生动物体内AChE的改变可以作为监测镉污染的毒性效应标志物,用于监测水生态系统中有毒污染物的存在,然而与其他生物标志物相比,AChE的敏感程度还较低,有关镉胁迫抑制AChE的机制尚不明确。

2.3 易感性标志物 2.3.1 金属硫蛋白(metallothionein,MT)

金属结合蛋白具有特殊的解毒功能,在金属元素代谢中起到重要作用。MT是一种低分子量蛋白质,其独特的半胱氨酸结构与金属离子具有高亲和力,与重金属形成的金属-硫簇参与金属离子解毒[83]。一般认为,重金属胁迫下MT的生理功能包括调节金属在细胞内的浓度、激活调节蛋白和清除自由基,且MT属于基因多态性家族[84-87],可以在转录水平上被环境中的金属诱导,因此,MT基因表达高低和MT含量的变化可以被认为是金属胁迫的易感性生物标志物[88-90]。研究发现,镉处理诱导四角蛤蜊[91]、底栖摇蚊幼虫[92]、长江华溪蟹[93]、红树林鳉鱼[94]和宽鳍[95]MT mRNA的表达均以剂量依赖的方式上调。缢蛏内脏中MT mRNA的组织特异性表达随镉离子浓度的增加而明显升高,且具有较好的剂量效应和时间依赖性[96],这些结果表明MT是水生环境中重金属的一种潜在生物标志物。

但镉诱导的MT响应也受到生活环境、物种和组织部位等因素的影响。例如,有学者在亚热带墨西哥太平洋牡蛎养殖区的河流附近、养殖区近海河口和养殖区中间位置3个地点对牡蛎进行取样,监测收集的生物体内MT含量变化,发现随着镉浓度的增加所有采样点收集的牡蛎MT含量均升高,且由于河流附近富集大量农药,该采样点MT含量明显高于其他采样点[97]。CRETÌ P等[98]针对密集型、半密集型及非密集型3种鱼类养殖系统探讨金头鲷组织中MT含量情况,结果发现所有养殖类型的金头鲷组织中MT含量由高到低依次为肌肉、肠、肝脏、肾脏和鳃,且密集型和半密集型养殖场中金头鲷肠道中MT含量明显高于非密集型养殖场中金头鲷肠道中MT含量。

此外,水生动物生存环境中存在的其他物质对镉胁迫的响应也有所影响。镉和锌离子对大型蚤的联合毒性研究发现,随着暴露浓度的增加,镉和锌重金属联合毒性相继表现出协同作用、相加作用和拮抗作用[99]。对脊尾白虾卵巢、肌肉、胃和肝胰脏4种组织中MT编码基因EcMT表达情况的研究表明,暴露于氯化镉中12 h基因表达下调,暴露于硫酸铜12 h基因表达上调,而暴露于这2种金属24 h后基因表达出现下调,这表明EcMT的表达可作为海水中镉污染的生物标志物[100]。与实验室环境条件相比,自然条件下各种污染物之间相互作用会影响生物体内MT变化,因此加强对混杂金属共同污染方面的研究具有重要意义。仅凭重金属含量定量描述无法反映重金属对生物的毒性效应机制,在这种情况下,通过测定水生动物体内MT含量及其基因表达水平可以有效地反映水质的污染程度。

2.3.2 热休克蛋白(heats shock proteins,HSP)

HSP是一类分子伴侣,负责蛋白质的折叠和组装,可作为防御蛋白来维持细胞稳态[101]。HSP也称应激蛋白,其合成的增加可以响应各种物理和化学压力,包括温度、盐度、金属和一些外源性化学物质,故这类蛋白质被认为是良好的应激标志物[102]。HSP具有基因多态性[103-105],其基因表达已成为转录调节、应激反应和分子进化的研究对象,可能成为一种新的环境生物标志物,当面对重金属胁迫、氧化应激等环境压力时,细胞产生各种HSP防止外来蛋白质聚集,促进折叠合成新蛋白,稳定并修复损坏蛋白,保护细胞免于受损[49, 66, 106-109]。

一些研究表明,冷、热应激可刺激水生动物对环境抗逆性的提高[110-112],如水温升高导致草鱼肝脏和肌肉中HSP73表达上调[113];热休克蛋白对盐胁迫的适应功能机理还不明确,一种可能性是热休克蛋白变异是变性蛋白质的积累结果,导致盐度休克细胞质壁分离过程中造成的水活性降低[114];此外,水生动物特殊的生存环境决定了水体低氧势必会对动物体造成一定损伤,低氧胁迫过程HSP表达量明显高于对照组,且具有组织差异性,复氧后表达水平恢复到正常[115-116],热激蛋白的差异表达在保护和维持低氧胁迫下水生动物的正常生理活动方面具有重要作用[117];以上结果表明热休克蛋白表达差异性可以作为抵御温度、盐度、溶氧应激的重要生理响应机制。

一般情况下,正常细胞内HSP水平较低,而在应激状态如重金属镉暴露下,水生动物体内HSP(HSP60、HSP70和HSP90) 基因的表达明显升高[109, 118]。镉离子亚致死浓度及短期暴露不足以引起金头鲷幼鱼HSP70的预期转录调制,随着浓度升高及暴露时间的延长,HSP70的相对表达水平明显下降[119],这与对太平洋牡蛎[120]、鲫鱼[121]的研究结果相似。也有研究指出,暴露于镉中的鱼不同组织中HSP的表达水平增加[122]或表达无任何变化[123],因此,可以推测该基因的普遍存在及其表达情况在很大程度上取决于组织差异性。

重金属胁迫可以激活机体内应激蛋白的合成,它们根据细胞的损伤程度能产生解毒和抗氧化作用,因此,HSP含量及基因的表达通常被提出作为一个敏感的和有效的生物标志物,用于评估金属镉暴露累积的生物效应。

3 展望

细胞、分子或基因水平上的生物标志物在镉污染暴露和毒性效应的早期预警方面显示了其优越性,并取得了很大进展,但镉对水生动物的生物标志研究尚不全面,并有待进一步研究, 具体表现为以下几个方面:(1) 目前国内外研究多集中于实验室研究条件下、单一或多种重金属联合暴露途径的响应规律,不能有效反映实际水环境中其他污染物复合污染对水生动物的综合影响。(2) 生物标志物监测水体重金属污染具有种间差异性和组织差异性,且生物响应过程容易受到外界环境因素如地理位置、温度、盐度和pH等的影响。(3) 应注重多种类型生物标志物的联合使用,增加总体污染评价结果的可靠性。(4) 加强镉等重金属对水生动物致毒机制方面的研究,有助于解释受重金属胁迫后各种生物标志物的变化规律。



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭