肺动脉高压形成中的血管重构分子生物学机制研究进展

您所在的位置:网站首页 各类血管的功能特征 肺动脉高压形成中的血管重构分子生物学机制研究进展

肺动脉高压形成中的血管重构分子生物学机制研究进展

2024-07-17 09:45:47| 来源: 网络整理| 查看: 265

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2019 Feb 25; 48(1): 102-110. Published online 2019 May 9. Chinese. doi: 10.3785/j.issn.1008-9292.2019.02.15PMCID: PMC10412420PMID: 31102364

Language: Chinese | English

肺动脉高压形成中的血管重构分子生物学机制研究进展Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertensionLi XIAO and Xiaoyong TONGLi XIAO

1. 重庆大学药学院药理系, 重庆 401331

Find articles by Li XIAOXiaoyong TONG

1. 重庆大学药学院药理系, 重庆 401331

Find articles by Xiaoyong TONGAuthor information Article notes Copyright and License information PMC Disclaimer 1. 重庆大学药学院药理系, 重庆 401331 Corresponding author.TONG Xiaoyong, E-mail: nc.ude.uqc@gnotgnoyoaix, https://orcid.org/0000-0002-0553-6723 肖 梨 moc.qq@237348464 https://orcid.org/0000-0002-7428-1365第一作者: (1993—),女,硕士研究生,主要从事心血管药理学研究;E-mail: ; Received 2018 Aug 30; Accepted 2018 Dec 2.PMC Copyright notice Abstract

肺动脉高压(PAH)是以肺动脉压和肺血管阻力升高为特征的临床血流动力学症候群,可导致右心衰竭和死亡。血管重构是PAH最显著的组织病理学特征,其形成受多方面因素的调控。内质网应激、钙紊乱和线粒体功能紊乱通过调节细胞内钙稳态和细胞代谢调控血管细胞的增殖凋亡能力;表观遗传学现象(如DNA损伤和微小RNA表达异常)参与调控血管细胞的异常增殖;血管细胞表型转化(包括内皮细胞间质转化和平滑肌细胞表型转换)是引起血管细胞异常增殖的重要原因。血管重构由多种细胞和分子通路共同作用产生,针对多靶点来改善PAH中发生的异常血管重构,进而延缓甚至逆转PAH的进程,有望成为PAH治疗上新的突破口。

Abstract

Pulmonary arterial hypertension (PAH) is a clinical hemodynamic syndrome characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance leading to right heart failure and death. Vascular remodeling is the most prominent histopathological feature of PAH, which is regulated by many factors. Endoplasmic reticulum stress, calcium disorder and mitochondrial dysfunction are involved in the vascular cell proliferation and apoptosis by regulating intracellular calcium homeostasis and cellular metabolism. Epigenetic phenomenon such as DNA damage and abnormal expression of miRNA are also involved in the regulation of abnormal proliferation of vascular cells. Vascular cell phenotype switching including endothelial-mesenchymal transition and smooth muscle cell phenotype switching play an important role in abnormal proliferation of vascular cells. Vascular remodeling is produced by a variety of cells and molecular pathways, and aiming at multiple targets which is expected to find a new breakthrough in the treatment of PAH, and to improve abnormal vascular remodeling, delay or even reverse the progression of PAH.

Keywords: Hypertension, pulmonary/pathology; Ventricular remodeling; Endoplasmic reticulum stress; Calcium/metabolism; Calmodulin/metabolism; Mitochondria; Epigenesis, genetic; Phenotype; Review

肺动脉高压(pulmonary arterial hypertension, PAH)是一种进行性心肺疾病,是以肺动脉压和肺血管阻力升高为特征的临床血流动力学症候群,可导致患者右心衰竭甚至死亡。PAH主要病理学特征是远端微小肺动脉重构,也称丛状病变。PAH的诊断标准:静息状态下肺动脉平均压高于25 mmHg (1 mmHg=0.133 kPa),运动状态下高于30 mmHg [ 1] 。由于PAH症状缺乏特异性,其实际发病率可能大大超出每年(2~3)/10 6的预期发病率 [ 2] 。此外,PAH具有明显的性别偏好,男女患病率比例为1∶2.3 [ 2] 。大多数药物治疗PAH的疗效依然不理想,大多数患者预后差,三年存活率仅为55%~65% [ 3] 。

随着PAH研究的不断深入,血管重构在PAH形成机制中所扮演的角色成为目前PAH的研究热点。血管重构是PAH最主要的病理组织学特征,表现为血管各层增厚,其中以中膜增厚最为显著。目前关于PAH形成中的血管重构的分子机制研究主要体现在以下三个方面:①PAH患者体内内质网应激、钙稳态、线粒体功能及结构等信号通路的变化参与PAH的血管重构;②表观遗传学现象包括DNA损伤、DNA损伤反应应答及微小RNA(miRNA,miR-)表达变化等在PAH中的作用;③血管细胞表型转换在血管重构中具有重要作用。本文主要总结以上三个方面的研究进展。

1 内质网应激、钙稳态、线粒体功能异常与肺动脉高压1.1 内质网应激调控血管细胞的增殖凋亡能力

受遗传因素的影响和不良环境的刺激,内质网基质中的蛋白质会发生错误折叠或不折叠,这些错误折叠或未折叠蛋白质不断累积将引起内质网应激,从而导致一系列的细胞功能紊乱,参与PAH的发生和发展 [ 4, 5] 。多项研究表明抑制内质网应激能够缓解PAH的进程。如在野百合碱诱导的PAH大鼠模型中,口服内质网应激抑制剂4-苯基丁酸可改善大鼠血管重构及PAH的形成;在平滑肌细胞中,4-苯基丁酸通过作用于ATF6信号通路抑制肺动脉平滑肌细胞(pulmonary arterial smooth muscle cell, PASMC)增殖并诱导细胞凋亡 [ 6] ;在低氧诱导的PAH模型中,4-苯基丁酸通过作用于未折叠蛋白质反应(UPR)的三条信号通路(PERK、IRE1、ATF6)改善了PAH的血管重构 [ 7] ;在野百合碱诱导的PAH大鼠模型中,4-苯基丁酸不仅能够改善肺动脉高压,还能改善右心室肥厚 [ 7] ;抑制内质网应激的二十二碳六烯酸可以改善低氧和野百合碱诱导的两种PAH模型中的血管重构 [ 8] ;铁螯合剂去铁胺通过减少细胞内铁离子引起的内质网应激,可以抑制PASMC增殖 [ 9] 。这些研究表明,内质网应激参与了PAH中的血管重构,抑制内质网应激可以作为治疗PAH的潜在药物作用靶点。

1.2 钙稳态调控细胞的增殖/凋亡平衡

细胞质中的钙水平受细胞膜上的钙离子流入/流出和细胞内的钙离子储存/释放共同调节。存在于真核生物内质网上的膜转运蛋白—肌浆网/内质网钙ATP酶2a(sarco-endoplasmic reticulum ATPase 2a, SERCA2a)对细胞内钙稳态的维持具有至关重要的作用。在PAH的发病机制中,PASMC细胞质中钙离子的增加能激活钙离子依赖性激酶和活化T细胞核因子(nuclear factor of activating T cell, NFAT),刺激平滑肌细胞增殖 [ 10] 。在PAH患者中,PASMC增殖/凋亡失衡与细胞质中钙离子增加密切相关 [ 11, 12] 。在PAH患者和野百合碱诱导的大鼠PAH模型中,肺组织和PASMC中SERCA2a蛋白表达均下降,推测SERCA2a表达下降可能参与了PAH的形成 [ 13] 。在PASMC中,SERCA2a表达上升可以通过抑制信号传导、转录激活因子3(signal transducer and activator of transcription 3, STAT3)和NFAT信号通路的活化以及增加骨形态发生蛋白受体2(bone morphogenetic protein recepor 2, BMPR2)的表达来抑制平滑肌细胞增殖 [ 12, 14] 。通过雾化将携带人 SERCA2a基因的病毒运输至肺部,能够缓解野百合碱大鼠PAH模型和猪PAH模型中的血管重构和右心室重构 [ 15, 16] ,进一步证明了SERCA2a通过抑制PASMC增殖来改善PAH症状。这些研究表明,恢复细胞内钙稳态可以改善PAH症状, SERCA2a基因转移技术有望应用于PAH的治疗。

1.3 线粒体功能异常影响血管细胞的能量代谢和增殖/凋亡平衡

线粒体是细胞能量代谢的主要场所,在行使其正常功能时会产生膜电位(ΔΨm)和线粒体活性氧(mitochondrial reactive oxygen species, mROS)。与人类健康的PASMC相比,PAH患者PASMC中的膜电位和mROS的含量均降低 [ 10] 。在慢性缺氧和野百合碱诱导的动物PAH模型中,PASMC也表现出相同的现象 [ 17] 。这些研究表明PAH的线粒体代谢功能异常。进一步研究表明,mROS减少会抑制细胞氧化还原状态,从而形成一种伪缺氧状态 [ 18] 。伪缺氧状态会导致两方面的不良后果:①低氧诱导因子1α(hypoxia inducible factor-1α, HIF-1α)常氧活化,活化的HIF-1α通过上调丙酮酸脱氢酶激酶1和丙酮酸脱氢酶激酶2,促进细胞向有氧糖酵解转变 [ 19] ,进而促进细胞增殖;②激活NFAT,进而导致PASMC增殖/凋亡失衡,最终形成血管重构 [ 20] 。研究发现富氧能够增加mROS,增强线粒体功能,缓解缺氧性肺动脉重构 [ 21] ,进一步证明了mROS可以调控PASMC增殖。

线粒体的结构异常在PAH血管重构中起着十分重要的作用。细胞内的线粒体频繁地发生着融合与分裂,正常情况下,线粒体的融合与分裂处于平衡状态,维持着线粒体正常的生理功能 [ 22] 。线粒体异常融合/分裂是引起肺动脉血管重构的重要原因:①介导线粒体融合的分子线粒体融合蛋白1(mitofusin-1, MFN-1)对维持线粒体融合/分裂稳态具有重要作用。miR-125a通过降低MFN-1的表达来修复线粒体融合与分裂平衡,进而抑制PASMC增殖 [ 23] ;②介导线粒体融合的分子粒体融合蛋白2(mitofusin-2, MFN-2)抑制平滑肌细胞增殖,也因此被称为“增生抑制基因” [ 24] 。在PAH中,MFN-2的表达下调导致线粒体破碎化,引起线粒体质量减少、数量增多,进而影响线粒体功能,参与血管重构 [ 25, 26] 。从绿茶中提取的化合物表没食子儿茶素-3-没食子酸酯通过改善PASMC中线粒体的异常分裂实现对细胞增殖的有效抑制 [ 27] ;③PAH中下调的过氧化物酶体增殖物激活受体γ(peroxisome proliferators-activated receptor γ, PPARγ)通过影响线粒体的结构和数量介导了PASMC的过度增殖 [ 28] ;④Nogo是蛋白质网状内皮素家族的成员,对于调节内质网的管状结构非常重要。在PAH中,Nogo异常过表达会增加线粒体-内质网单元间的距离,引起线粒体功能异常,进而导致PASMC过度增殖 [ 29] 。这些研究表明线粒体结构参与了血管重构,恢复线粒体正常结构相关靶标有望成为PAH及其他血管重构相关疾病新的治疗靶点。

2 表观遗传学现象与肺动脉高压2.1 DNA损伤引起血管细胞异常增殖

DNA在生理条件下是化学不稳定的,内源性因素(活性氧、活性氮、炎症、雌激素代谢物等)和外源性因素(紫外线、致癌物质等)均会导致DNA损伤。核DNA损伤在PAH内皮细胞的丛状病变、PAH患者远端肺动脉和PASMC中均存在 [ 30] 。核DNA损伤诱发DNA修复应答机制,促使细胞出现凋亡抵抗和过度增殖的表型 [ 31] ,参与血管重构:①PAH中的核DNA损伤与聚(ADP-核糖)聚合酶-1[poly(ADP-ribose)polymerase 1, PARP-1]的表达增加相关 [ 30, 32] 。在PASMC中,受核DNA损伤的刺激,PARP1通过miR-204/STAT3途径活化含溴结构域蛋白4、NFAT及HIF-1α,从而诱发PASMC炎症和增殖 [ 30, 33] 。PARP-1抑制剂ABT-888可以逆转野百合碱和Sugen/缺氧诱导的PAH [ 30] ;②PAH中应答核DNA损伤时,与DNA修复有关的Pim1和Survivin也表达增加 [ 34, 35] ,促进了细胞的增殖、炎症及凋亡抵抗,而抑制这两种蛋白可以改善上述症状 [ 36, 37] ;③共济失调毛细血管扩张症突变基因(ataxia telangiectasia-mutated gene, ATM)是另一个参与核DNA修复应答的分子,在百合碱大鼠PAH模型的早期及中期肺组织中,ATM表达增加,ATM抑制剂可以有效抑制PASMC增殖 [ 38] 。

与核DNA相比,线粒体DNA因缺乏保护性组蛋白,对各种刺激更为敏感。一方面,线粒体DNA损伤参与了增加PAH风险的疾病如系统性红斑狼疮的发生 [ 39, 40] ;另一方面,线粒体DNA损伤会影响线粒体的正常功能,从而导致PASMC增殖及凋亡抵抗 [ 41] 。Sirtuin 3是一种修复线粒体DNA的线粒体蛋白,其在PAH患者和野百合碱PAH大鼠中表达下调 [ 42] 。Sirtuin 3敲除的小鼠能自发形成PAH [ 43] 。这些研究表明线粒体DNA损伤参与了PAH的形成。目前对核DNA损伤和线粒体DNA损伤在PAH的报道相对较少,其参与调控平滑肌的增殖及凋亡抵抗的具体机制尚不明确,有待后续进一步确认。

2.2 微小RNA参与调控血管细胞增殖和凋亡

miRNA是一组由约22个核苷酸组成的非编码小RNA,它通过抑制蛋白质的翻译和降解mRNA来沉默基因的表达 [ 44] 。miRNA通过调控相关基因的表达引起血管内皮细胞损伤、平滑肌细胞增殖、迁移和细胞外基质异常沉积等生物学行为改变,参与PAH的发生和发展过程 [ 45, 46] 。已知有大量的miRNA参与了PAH的血管重构。与正常肺动脉血管比较,重度PAH患者的丛样病变血管中miR-21和miR-126表达增加,miR-204表达减少 [ 47] ;miR-145通过影响PASMC的分化功能及增殖凋亡能力参与血管重构 [ 48, 49] ;miR-204的血液循环水平与PAH严重程度呈负相关 [ 50] ,是PAH的候选生物标志物;血管紧张素Ⅱ和内皮素-1可以下调miR-204表达水平,导致STAT3活化,促进PASMC增殖和凋亡抵抗,引起血管重构 [ 51] ;在Sugen5416/缺氧诱导的PAH小鼠中,TGF-β诱导调控miR-214表达,进而通过调节磷酸酶和张力蛋白同源基因参与血管重构及心室重构 [ 52] 。在PAH中miRNA调控血管重构分子机制的最新研究成果列举在表 1中。

表表1 已知微小RNA在肺动脉高压患者中的表达及相关信号通路一览

Expression of miRNA in patients with pulmonary arterial hypertension and related signaling pathways

微小RNA

肺动脉高压患者中的表达

参与血管重构信号通路

参考文献

miR-21

增加

BMPR2/ miR-21/ RhoB

53

miR-130/310

增加

miR-130/310 /miR-204/ STAT3miR-130/310/PPARγ

54-55

miR-29b

减少

miR-29b /Mcl-1miR-29b / CCND2

56

miR-222

增加

miR-222/ P27miR-222/ TIMP3

57

miR-26b

减少

miR-26b/SRF/CTGF

58

miR-361-5p

增多

miR-361-5p /ABCA1miR-361-5p/ JAK2/STAT3

59

miR138

增加

miR138/TASK1

60

miR-150

减少

miR-150/ HIF-1a

61

miR-221-3p

增加

miR-221-3p/ AXIN2

62

miR-17~92

增加

STAT3-miR-17~92-BMPR2miR-17~92/PHD2/ HIF1αmiR-17~92/PDLIM5/TGF-β3/ pSmad3

63-64

miR-23a

增加

miR-23a /BMPR2/Smad1

65

Open in a separate window

虽然已经有大量研究揭示了miRNA在PAH中的作用,但miRNA在不同的细胞类型中具有不同的表达模式,单个miRNA会靶向大量mRNA,同时也可以通过反馈环参与调节mRNA的表达。有些miRNA可能存在物种相关的差异,在实验模型中发现特定的miRNA不一定在人类疾病中发挥同等作用。另外,目前针对miRNA的治疗还存在脱靶效应 [ 66] ,因此miRNA应用于PAH的治疗还需要后续大量的研究。

3 血管细胞表型转化与肺动脉高压3.1 内皮细胞间质转化参与血管细胞的异常增殖

内皮细胞间质转化是指内皮细胞通过特定的程序转化为具有肌成纤维细胞或间充质细胞表型的过程。内皮细胞表型转变导致内皮细胞原有的紧密缝隙连接能力降低,炎性因子分泌增加,与基膜的分离、增殖、迁移及炎性细胞的浸润相关 [ 67, 68] 。在内皮细胞间质转化过程中(图 1),内皮细胞失去典型的内皮标志物,如CD31和血管内皮钙黏蛋白,并开始表达α平滑肌肌动蛋白和波形蛋白 [ 69] 。PAH患者中,发生转化并表达α平滑肌肌动蛋白的内皮细胞主要聚集在血管壁中层 [ 69] 。利用mTomato/mGreen双荧光标记小鼠来检查内皮遗传谱系,发现发生内皮细胞间质转化的细胞主要聚集于重构肺动脉的新内膜中,推测丛状病变中新生内膜细胞可能起源于这些细胞 [ 70] 。PAH患者肺动脉丛状病变中的内皮细胞形态发生了变化,同时表达内皮细胞标志物和平滑肌标志物 [ 71] 。除此之外,内皮细胞间充质基因、纤连蛋白、N-钙黏蛋白、波形蛋白及内皮细胞间质转化相关转录因子Twist等基因也在丛状病变的内皮细胞中表达 [ 71] 。在SU-5416/缺氧PAH模型中,5%~7%的肺动脉内皮细胞表达α平滑肌肌动蛋白;在系统性硬化症相关的PAH患者肺组织中,3%~5%肺小动脉中存在内皮细胞间质转化现象 [ 67] 。这些研究进一步证明了内皮细胞间质转化参与PAH的形成。发生内皮细胞间质转化的内皮细胞通过直接转化为具有较高增殖和迁移能力的平滑肌样细胞,和通过旁分泌间接影响血管内膜、中膜增殖,参与PAH中的血管重构 [ 68] 。在体外,炎性细胞因子(TGF-β、IL-6等)能够刺激健康的肺动脉内皮细胞发生内皮细胞间质转化,表现为典型的内皮细胞标志物缺失,而α平滑肌肌动蛋白、钙调蛋白和Ⅰ型胶原在内皮细胞中的表达增加 [ 67, 72, 73, 74] 。在PAH肺动脉内皮细胞中,转录因子Twist1和HIF2-α、BMPR2、BMP-7等均参与调节内皮细胞间质转化 [ 73, 75, 76, 77] 。

Open in a separate window 图1

内皮细胞间质转化过程示意图

由内皮细胞组成的内膜是血管与流动血液直接接触的界面,其功能的变化可能是引发血管重构的始发原因,探究内皮细胞间质转化的分子机制对于阐明血管重构的分子机制意义重大。

3.2 平滑肌细胞表型转化导致血管细胞异常增殖

微小肺动脉的肌化是PAH发展中最具特征的肺血管结构改变。重构血管的平滑肌层具有多种细胞来源,除局部平滑肌增殖外,循环祖细胞、局部内皮细胞均可分化为平滑肌细胞 [ 78] 。中层平滑肌重构在血管重构中最为明显,局部平滑肌细胞转型是重构中层细胞的主要来源。平滑肌细胞具有收缩型和合成型两种表型。正常情况下,成熟的平滑肌细胞最终分化成收缩表型,病理情况下平滑肌细胞发生去分化,即平滑肌由收缩型向合成型转化。合成型平滑肌具有更强的增殖、迁移能力 [ 79] 。远端肺微小动脉重构血管的平滑肌细胞部分来源于收缩型平滑肌,这些细胞发生了去分化,迁移到远端血管,进行增殖和再分化,参与了PAH中丛状病变的形成 [ 80] 。目前已有很多关于平滑肌细胞转型的机制研究。内皮细胞分泌的CX3CL1通过CX3CL1-CX3CR1信号通路促进血管平滑肌表型转化 [ 81] 。在PAH患者增生的远端PASMC中及低氧条件下的平滑肌细胞中,kruppel样因子4表达上调,刺激细胞向远端迁移及去分化,促进远端血管肌化 [ 82] 。在低氧诱导的PAH中,凝集素样氧化低密度脂蛋白受体1表达上调,通过ERK1/2-Elk-1/MRTF-A-SRF信号通路介导了肺动脉平滑肌的去分化及表型转化 [ 79] 。在PAH中下调的Smad3通过Smad3-心肌素相关转录因子信号通路,介导了平滑肌细胞转型 [ 83] 。在低氧诱导的PAH中,软骨寡聚基质蛋白在肺组织和平滑肌细胞中表达降低,增加平滑肌细胞中软骨寡聚基质蛋白的表达能够改善平滑肌细胞的转型 [ 84] 。

由平滑肌细胞组成的血管中膜一直是血管重构研究的焦点,平滑肌细胞表型转化在血管重构中的作用也备受关注,虽已有部分研究阐明平滑肌细胞表型转化在血管重构中的重要作用,但其具体机制还待进一步研究。

4 结语

PAH主要的病理学特征是远端微小肺动脉重构,增加了肺血管阻力和肺动脉压力。当前治疗PAH的药物,如前列环素类似物、内皮素受体抑制剂和5型磷酸二酯酶抑制剂主要是作为全身血管疾病中的血管扩张剂,虽然可以在一定程度上改善PAH患者的生活质量,但PAH患者预后仍然很差。本文总结了近年来关于PAH中血管重构的机制研究。PAH中的血管重构是由多种细胞和分子通路共同作用产生,因此针对多靶点来改善PAH中发生的异常血管重构,从而延缓甚至逆转PAH的进程,有望在PAH治疗上找到新的突破口。

参考文献1. YUAN J X, RUBIN L J. Pathogenesis of pulmonary arterial hypertension: the need for multiple hits. Circulation. 2005;111(5):534–538. [PubMed] [Google Scholar]2. VONK NOORDEGRAAF A, GROENEVELDT J A, BOGAARD H J. Pulmonary hypertension. Eur Respir Rev. 2016;25(139):4–11. [PMC free article] [PubMed] [Google Scholar]3. MCGOON M D, BENZA R L, ESCRIBANO-SUBIAS P, et al. Pulmonary arterial hypertension: epidemiology and registries. J Am Coll Cardiol. 2013;62:D51–D59. [PubMed] [Google Scholar]4. YEAGER M E, BELCHENKO D D, NGUYEN C M, et al. Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012;46(1):14–22. [PMC free article] [PubMed] [Google Scholar]5. YEAGER M E, REDDY M B, NGUYEN C M, et al. Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ. 2012;2(2):229–240. [PMC free article] [PubMed] [Google Scholar]6. PETER D, ROXANE P, STENSON T H, et al. Attenuating endoplasmic reticulum stress as a novel therapeutic strategy in pulmonary hypertension. Circulation. 2013;127(1):115–125. [PubMed] [Google Scholar]7. KOYAMA M, FURUHASHI M, ISHIMURA S, et al. Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2014;306(9):H1314–1323. [PubMed] [Google Scholar]8. CHEN R, ZHONG W, SHAO C, et al. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation. Am J Physiol Lung Cell Mol Physiol. 2018;314(2):L243–255. [PubMed] [Google Scholar]9. WANG G, LIU S, WANG L, et al. Lipocalin-2 promotes endoplasmic reticulum stress and proliferation by augmenting intracellular iron in human pulmonary arterial smooth muscle cells. Int J Biol Sci. 2017;13(2):135–144. [PMC free article] [PubMed] [Google Scholar]10. BONNET S, ROCHEFORT G, SUTENDRA G, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. 2007;104(27):11418-11423. [PMC free article] [PubMed] [Google Scholar]11. STAMMERS A N, SUSSER S E, HAMM N C, et al. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA) Can J Physiol Pharmacol. 2015;93(10):843–854. [PubMed] [Google Scholar]12. BOBE R, HADRI L, LOPEZ J J, et al. SERCA2a controls the mode of agonist-induced intracellular Ca 2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells . J Mol Cell Cardiol. 2011;50(4):621–633. [PMC free article] [PubMed] [Google Scholar]13. HADRI L, KRATLIAN R G, BENARD L, et al. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation. 2013;128(5):512–523. [PMC free article] [PubMed] [Google Scholar]14. LIPSKAIA L, DEL M F. CAPIOD T, et al. Sarco/endoplasmic reticulum Ca 2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat . Circ Res. 2005;97(5):488–495. [PubMed] [Google Scholar]15. HADRI L, KRATLIAN R G, BENARD L, et al. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation. 2013;128(5):512–523. [PMC free article] [PubMed] [Google Scholar]16. AGUERO J, ISHIKAWA K, HADRI L, et al. Intratracheal gene delivery of SERCA2a ameliorates chronic post-capillary pulmonary hypertension: a large animal model. J Am Coll Cardiol. 2016;67(17):2032–2046. [PMC free article] [PubMed] [Google Scholar]17. MCMURTRY M S, BONNET S, WU X, et al. Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res. 2004;95(8):830–840. [PubMed] [Google Scholar]18. MARSBOOM G, TOTH P T, RYAN J J, et al. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res. 2012;110(11):1484–1497. [PMC free article] [PubMed] [Google Scholar]19. PIAO L, SIDHU V K, FANG Y H, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J Mol Med (Berl) 2013;91(3):333–346. [PMC free article] [PubMed] [Google Scholar]20. DROMPARIS P, PAULIN R, SUTENDRA G, et al. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circ Res. 2013;113(2):126–136. [PubMed] [Google Scholar]21. CHEN J, WANG Y X, DONG M Q, et al. Reoxygenation reverses hypoxic pulmonary arterial remodeling by inducing smooth muscle cell apoptosis via reactive oxygen species-mediated mitochondrial dysfunction. J Am Heart Assoc. pii: 2017;6(6) [PMC free article] [PubMed] [Google Scholar]22. YOULE R J, AM V D B Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–1065. [PMC free article] [PubMed] [Google Scholar]23. MA C. ZHANG C, MA M. et al. MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling. J Mol Med (Berl) 2017;95(9):977–993. [PubMed] [Google Scholar]24. FANG X, CHEN X, ZHONG G, et al. Mitofusin 2 downregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PI3K/Akt and mitochondrial apoptosis pathways. J Cardiovasc Pharma. 2016;67(2):164–174. [PubMed] [Google Scholar]25. RYAN J J, MARSBOOM G, FANG Y H, et al. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;187(8):865–878. [PMC free article] [PubMed] [Google Scholar]26. RYAN J, DASGUPTA A, HUSTON J, et al. Mitochondrial dynamics in pulmonary arterial hypertension. J Mol Med (Berl) 2015;93(3):229–242. [PMC free article] [PubMed] [Google Scholar]27. ZHU T T, ZHANG W F, LUO P, et al. Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion. Eur J Pharmacol. 2017;809:42–51. [PubMed] [Google Scholar]28. YELIGAR S M, KANG B Y, BIJLI K M, et al. PPARγ regulates mitochondrial structure and function and HPASMC proliferation. Am J Respir Cell Mol Biol. 2018;58(5):648–657. [PMC free article] [PubMed] [Google Scholar]29. SUTENDRA G, DROMPARIS P, WRIGHT P, et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med. 2011;3(88):88ra55. [PMC free article] [PubMed] [Google Scholar]30. MELOCHE J, PFLIEGER A, VAILLANCOURT M, et al. Role for DNA damage signaling in pulmonary arterial hypertension. Circulation. 2014;129(7):786–797. [PubMed] [Google Scholar]31. VAILLANCOURT M, RUFFENACH G, MELOCHE J, et al. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol. 2015;31(4):407–415. [PubMed] [Google Scholar]32. MELOCHE J, LE G M, POTUS F, et al. miR-223 reverses experimental pulmonary arterial hypertension. Am J Physiol Cell Physiol. 2015;309(6):C363–372. [PubMed] [Google Scholar]33. MELOCHE J, POTUS F, VAILLANCOURT M, et al. Bromodomain-containing protein 4: the epigenetic origin of pulmonary arterial hypertension. Circ Res. 2015;117(6):525–535. [PubMed] [Google Scholar]34. KUMAR R. Berlin: Springer; 2013. Nuclear signaling pathways and targeting transcription in cancer. [Google Scholar]35. HU S, QU Y, XU X, et al. Nuclear survivin and its relationship to DNA damage repair genes in non-small cell lung cancer investigated using tissue array. PLoS One. 2013;8(9) [PMC free article] [PubMed] [Google Scholar]36. PAULIN R, MELOCHE J, JACOB M H, et al. Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2011;301(5):H1798–1809. [PubMed] [Google Scholar]37. MCMURTRY M S, ARCHER S L, ALTIERI D C, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest. 2005;115(6):1479–1491. [PMC free article] [PubMed] [Google Scholar]38. HU F, LIU C, LIU H, et al. Ataxia-telangiectasia mutated (ATM) protein signaling participates in development of pulmonary arterial hypertension in rats. Med Sci Monit. 2017;23:4391–4400. [PMC free article] [PubMed] [Google Scholar]39. LÓPEZ-LÓPEZ L, NIEVES-PLAZA M, CASTRO MDEL R, et al. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus. Lupus. 2014;23(11):1133–1141. [PMC free article] [PubMed] [Google Scholar]40. FETTERMAN J L, HOLBROOK M, WESTBROOK D G, et al. Mitochondrial DNA damage and vascular function in patients with diabetes mellitus and atherosclerotic cardiovascular disease. Cardiovas Diabetol. 2016;15(1):53. [PMC free article] [PubMed] [Google Scholar]41. CHEN P I, CAO A, MIYAGAWA K, et al. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight. 2017;2(2) [PMC free article] [PubMed] [Google Scholar]42. CHENG Y, REN X, GOWDA A S, et al. Interaction of Sirt. contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 2013;4 [PMC free article] [PubMed] [Google Scholar]43. PAULIN R, DROMPARIS P, SUTENDRA G, et al. Sirtuin 3 deficiency is associated with inhibited mitochondrial function and pulmonary arterial hypertension in rodents and humans. Cell Metab. 2014;20(5):827–839. [PubMed] [Google Scholar]44. AMBROS V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–826. [PubMed] [Google Scholar]45. KIM G H. RYAN J J, MARSBOOM G, et al. Epigenetic mechanisms of pulmonary hypertension. Pulm Circ. 2011;1(3):347–356. [PMC free article] [PubMed] [Google Scholar]46. LI M, RIDDLE S R, FRID M G, et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2011;187(5):2711–2722. [PMC free article] [PubMed] [Google Scholar]47. BOCKMEYER C L, MAEGEL L, JANCIAUSKIENE S, et al. Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant. 2012;31(7):764–772. [PubMed] [Google Scholar]48. BOETTGER T, BEETZ N, KOSTIN S, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119(9):2634–2647. [PMC free article] [PubMed] [Google Scholar]49. CARUSO P, DEMPSIE Y, STEVENS H C, et al. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res. 2012;111(3):290–300. [PubMed] [Google Scholar]50. LEE C. MITSIALIS S A, ASLAM M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–2611. [PMC free article] [PubMed] [Google Scholar]51. COURBOULIN A, PAULIN R, GIGUÈRE N J, et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med. 2011;208(3):535–548. [PMC free article] [PubMed] [Google Scholar]52. STEVENS H C, DENG L, GRANT J S, et al. Regulation and function of miR-214 in pulmonary arterial hypertension. Pulm Circ. 2016;6(1):109–117. [PMC free article] [PubMed] [Google Scholar]53. PARIKH V N, JIN R C, RABELLO S, et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation. 2012;125(12):1520–1532. [PMC free article] [PubMed] [Google Scholar]54. BERTERO T, COTTRILL K, KRAUSZMAN A, et al. The microRNA-130/301 family controls vasoconstriction in pulmonary hypertension. J Biol Chem. 2015;290(4):2069–2085. [PMC free article] [PubMed] [Google Scholar]55. BERTERO T, LU Y, ANNIS S, et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest. 2014;124(8):3514–3528. [PMC free article] [PubMed] [Google Scholar]56. CHEN J, LI Y, LI Y, et al. Effect of miR-29b on the proliferation and apoptosis of pulmonary artery smooth muscle cells by targeting Mcl-1 and CCND2. Biomed Res Int. 2018;2018:6051407. [PMC free article] [PubMed] [Google Scholar]57. XU Y, BEI Y, SHEN S, et al. MicroRNA-222 Promotes the proliferation of pulmonary arterial smooth muscle cells by targeting P27 and TIMP3. Cell Physiol Biochem. 2017;43(1):282–292. [PubMed] [Google Scholar]58. ZHOU S, SUN L, CAO C, et al. Hypoxia-induced microRNA-26b inhibition contributes to hypoxic pulmonary hypertension via CTGF. J Cell Biochem. 2018;119(2):1942–1952. [PubMed] [Google Scholar]59. ZHANG X, SHAO R, GAO W, et al. Inhibition of miR-361-5p suppressed pulmonary artery smooth muscle cell survival and migration by targeting ABCA1 and inhibiting the JAK2/STAT3 pathway. Exp Cell Res. 2018;363(2):255–261. [PubMed] [Google Scholar]60. LIU J J, ZHANG H, XING F, et al. MicroRNA‑138 promotes proliferation and suppresses mitochondrial depolarization in human pulmonary artery smooth muscle cells through targeting TASK‑1. Mol Med Rep. 2018;17(2):3021–3027. [PMC free article] [PubMed] [Google Scholar]61. CHEN M, SHEN C, ZHANG Y, et al. MicroRNA-150 attenuates hypoxia-induced excessive proliferation and migration of pulmonary arterial smooth muscle cells through reducing HIF-1alpha expression. Biomed Pharmacother. 2017;93:861–868. [PubMed] [Google Scholar]62. NIE X, CHEN Y, TAN J, et al. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension. Vascul Pharmacol. 2017 [PubMed] [Google Scholar]63. CHEN T, ZHOU Q, TANG H, et al. miR-17/20 controls prolyl hydroxylase 2 (PHD2 factor )/hypoxia-inducible 1 (HIF 1) to regulate pulmonary artery smooth muscle cell proliferation. J Am Heart Assoc. 2016;5(12) [PMC free article] [PubMed] [Google Scholar]64. BROCK M, TRENKMANN M, GAY R E. et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res. 2009;104(10):1184–1191. [PubMed] [Google Scholar]65. ZHANG Y, PENG B, HAN Y. MiR-23a regulates the proliferation and migration of human pulmonary artery smooth muscle cells (HPASMCs) through targeting BMPR2/Smad1 signaling. Biomed Pharmacother. 2018;103:1279–1286. [PubMed] [Google Scholar]66. LEOPOLD J A, MARON B A. Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension. Int J Mol Sci. pii: 2016;17(5) [PMC free article] [PubMed] [Google Scholar]67. GOOD R B, GILBANE A J, TRINDER S L, et al. Endothelial to mesenchymal transition contributes to endothelial dysfunction in pulmonary arterial hypertension. Am J Pathol. 2015;185(7):1850–1858. [PubMed] [Google Scholar]68. SUZUKI T, CARRIER E J, TALATI M H, et al. Isolation and characterization of endothelial-to-mesenchymal transition cells in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L118–126. [PMC free article] [PubMed] [Google Scholar]69. FRID M G, KALE V A, STENMARK K R. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis . Circ Res. 2002;90(11):1189–1196. [PubMed] [Google Scholar]70. QIAO L, NISHIMURA T, SHI L, et al. Endothelial fate mapping in mice with pulmonary hypertension. Circulation. 2014;129(6):692–703. [PubMed] [Google Scholar]71. RANCHOUX B, ANTIGNY F, RUCKER-MARTIN C, et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 2015;131(11):1006–1018. [PubMed] [Google Scholar]72. SONG S, ZHANG M, YI Z, et al. The role of PDGF-B/TGF-β1/neprilysin network in regulating endothelial-to-mesenchymal transition in pulmonary artery remodeling. Cell Signal. 2016;28(10):1489–1501. [PubMed] [Google Scholar]73. KRENNING G, BARAUNA V G, KRIEGER J E, et al. Endothelial plasticity: shifting phenotypes through force feedback. Stem Cells Int. 2016;2016:9762959. [PMC free article] [PubMed] [Google Scholar]74. SABBINENI H, VERMA A, SOMANATH P R. Isoform-specific effects of transforming growth factor β on endothelial-to-mesenchymal transition. J Cell Physiol. 2018;233(11):8418–8428. [PMC free article] [PubMed] [Google Scholar]75. HOPPER R K, MOONEN J R, DIEBOLD I, et al. In pulmonary arterial hypertension, reduced BMPR2 promotes endothelial-to-mesenchymal transition via HMGA1 and its target slug. Circulation. 2016;133(18):1783–1794. [PMC free article] [PubMed] [Google Scholar]76. MAMMOTO T, MUYLEART M, KONDURI G G, et al. Twist1 in hypoxia-induced pulmonary hypertension through transforming growth factor-β–Smad signaling. Am J Respir Cell Mol Biol. 2018;58(2):194–207. [PubMed] [Google Scholar]77. ZHANG H, LIU Y, YAN L, et al. Bone morphogenetic protein-7 inhibits endothelial-mesenchymal transition in pulmonary artery endothelial cell under hypoxia. J Cell Physiol. 2018;233(5):4077–4090. [PubMed] [Google Scholar]78. ZHU P, HUANG L, GE X, et al. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling. Int J Exp Pathol. 2006;87(6):463–474. [PMC free article] [PubMed] [Google Scholar]79. ZHANG W, ZHU T, WU W, et al. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension. Eur J Pharmacol. 2018;818:84–95. [PubMed] [Google Scholar]80. SHEIKH A Q, LIGHTHOUSE J K, GREIF D M. Recapitulation of developing artery muscularization in pulmonary hypertension. Cell Rep. 2014;6(5):809–817. [PMC free article] [PubMed] [Google Scholar]81. MALESKER M A, MORROW L E. Monitoring immunosuppressive medications for lung disease and lung transplantation: the time is now. Chest. 2012;142(5):1081–1082. [PubMed] [Google Scholar]82. SHEIKH A Q, MISRA A, ROSAS I O, et al. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med. 2015;7(308) [PMC free article] [PubMed] [Google Scholar]83. ZABINI D, GRANTON E, HU Y, et al. Loss of SMAD3 promotes vascular remodeling in pulmonary arterial hypertension via MRTF disinhibition. Am J Respir Crit Care Med. 2018;197(2):244–260. [PubMed] [Google Scholar]84. YU H, JIA Q, FENG X, et al. Hypoxia decrease expression of cartilage oligomeric matrix protein to promote phenotype switching of pulmonary arterial smooth muscle cells. Int J Biochem Cell Biol. 2017 [PubMed] [Google Scholar]


【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


    图片新闻

    实验室药品柜的特性有哪些
    实验室药品柜是实验室家具的重要组成部分之一,主要
    小学科学实验中有哪些教学
    计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
    实验室各种仪器原理动图讲
    1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
    高中化学常见仪器及实验装
    1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
    微生物操作主要设备和器具
    今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
    浅谈通风柜使用基本常识
     众所周知,通风柜功能中最主要的就是排气功能。在

    专题文章

      CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭