用于关节软骨组织工程的功能化水凝胶

您所在的位置:网站首页 关节软骨是什么组织 用于关节软骨组织工程的功能化水凝胶

用于关节软骨组织工程的功能化水凝胶

2024-07-09 19:08:43| 来源: 网络整理| 查看: 265

[ 1 ] Zhou L, Gjvm VO, Malda J, Stoddart MJ, Lai Y, Richards RG, et al. Innovative tissue‐engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv Healthc Mater 2020;9(23):2001008. 链接1

[ 2 ] Lin J, Shi Y, Men Y, Wang X, Ye J, Zhang C. Mechanical roles in formation of oriented collagen fibers. Tissue Eng Part B Rev 2020;26(2):116‒28. 链接1

[ 3 ] Akkiraju H, Nohe A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol 2015;3(4):177‒92. 链接1

[ 4 ] Li J, Pei M. Decellularized stem cell matrix: a novel approach for autologous chondrocyte implantation-based cartilage repair. In: Hayat M, editor. Stem cells and cancer stem cells. Dordrecht: Springer; 2014. p. 109‒15. 链接1

[ 5 ] Vaquero-Picado A, Rodríguez-Merchán EC. Cartilage injuries of the knee. In: Rodríguez-Merchán E, Liddle A, editors. Joint preservation in the adult knee. Cham: Springer; 2017. p. 127‒41. 链接1

[ 6 ] Bowland P, Ingham E, Jennings L, Fisher J. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee. Proc Inst Mech Eng H 2015;229(12):879‒88. 链接1

[ 7 ] Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther 2012;7(2):143‒8. 链接1

[ 8 ] Bao W, Li M, Yang Y, Wan Y, Wang X, Bi N, et al. Advancements and frontiers in the high performance of natural hydrogels for cartilage tissue engineering. Front Chem 2020;8:53. 链接1

[ 9 ] Stampoultzis T, Karami P, Pioletti DP. Thoughts on cartilage tissue engineering: a 21st century perspective. Curr Res Transl Med 2021;69(3):103299. 链接1

[10] Rahmani Del Bakhshayesh A, Babaie S, Tayefi Nasrabadi H, Asadi N, Akbarzadeh A, Abedelahi A. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage. Artif Cells Nanomed Biotechnol 2020;48(1):1089‒104. 链接1

[11] Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med 2017;36(3):413‒25. 链接1

[12] Müller-Gerbl M, Schulte E, Putz R. The thickness of the calcified layer of articular cartilage: a function of the load supported? J Anat 1987;154:103‒11.

[13] Wu J, Chen Q, Deng C, Xu B, Zhang Z, Yang Y, et al. Exquisite design of injectable hydrogels in cartilage repair. Theranostics 2020;10(21):9843‒64. 链接1

[14] Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced hydrogels for cartilage tissue engineering: recent progress and future directions. Polymers 2021;13(23):4199. 链接1

[15] Jiang S, Guo W, Tian G, Luo X, Peng L, Liu S, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int 2020;2020:5690252. 链接1

[16] Everhart JS, Campbell AB, Abouljoud MM, Kirven JC, Flanigan DC. Cost-efficacy of knee cartilage defect treatments in the United States. Am J Sports Med 2020;48(1):242‒51. 链接1

[17] Lanza R, Langer R, Vacanti JP, Atala A, editors. Principles of tissue engineering. London: Academic Press; 2020. 链接1

[18] Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 2015;11(1):21‒34. 链接1

[19] Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in articular cartilage tissue engineering: 3D mesenchymal stem cell sheets as candidates for engineered hyaline-like cartilage. Cells 2021;10(3):643. 链接1

[20] Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc 2016;11(10):1775‒81. 链接1

[21] Bahram M, Mohseni N, Moghtader M. An introduction to hydrogels and some recent applications. In: Majee SB, editor. Emerging concepts in analysis and applications of hydrogels. IntechOpen; 2016. p. 9‒38. 链接1

[22] Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon 2020;6(4):e03719. 链接1

[23] Frachini EC, Petri DF. Magneto-responsive hydrogels: preparation, characterization, biotechnological and environmental applications. J Braz Chem Soc 2019;30(10):2010‒28.

[24] Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater 2019;29(36):1903279. 链接1

[25] Catoira MC, Fusaro L, Di Francesco D, Ramella M, Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med 2019;30(10):115. 链接1

[26] Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med 2017;6(10):1940‒8. 链接1

[27] Boso D, Maghin E, Carraro E, Giagante M, Pavan P, Piccoli M. Extracellular matrix-derived hydrogels as biomaterial for different skeletal muscle tissue replacements. Materials 2020;13(11):2483. 链接1

[28] Ahearne M. Introduction to cell-hydrogel mechanosensing. Interface Focus 2014;4(2):20130038. 链接1

[29] Clevenger TN, Luna G, Boctor D, Fisher SK, Clegg DO. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells. J Tissue Eng 2016;7:2041731416670482. 链接1

[30] Wang C, Feng N, Chang F, Wang J, Yuan B, Cheng Y, et al. Injectable cholesterol-enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration. Adv Healthc Mater 2019;8(14):e1900312. 链接1

[31] Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev 2021;8(2):nwaa254. 链接1

[32] Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 2019;20(4):1478‒92. 链接1

[33] Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 2020;6(4):998‒1011. 链接1

[34] Aisenbrey EA, Bilousova G, Payne K, Bryant SJ. Dynamic mechanical loading and growth factors influence chondrogenesis of induced pluripotent mesenchymal progenitor cells in a cartilage-mimetic hydrogel. Biomater Sci 2019;7(12):5388‒403. 链接1

[35] Lv X, Sun C, Hu B, Chen S, Wang Z, Wu Q, et al. Simultaneous recruitment of stem cells and chondrocytes induced by a functionalized self-assembling peptide hydrogel improves endogenous cartilage regeneration. Front Cell Dev Biol 2020;8:864. 链接1

[36] Xu J, Feng Q, Lin S, Yuan W, Li R, Li J, et al. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials 2019;210:51‒61. 链接1

[37] Cucchiarini M, Madry H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2019;15(1):18‒29. 链接1

[38] Novak T, Seelbinder B, Twitchell CM, Voytik-Harbin SLP, Neu CPP. Dissociated and reconstituted cartilage microparticles in densified collagen induce local hMSC differentiation. Adv Funct Mater 2016;26(30):5427‒36. 链接1

[39] Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014;5(1):3935. 链接1

[40] Jiang X, Liu J, Liu Q, Lu Z, Zheng L, Zhao J, et al. Therapy for cartilage defects: functional ectopic cartilage constructed by cartilage-simulating collagen, chondroitin sulfate and hyaluronic acid (CCH) hybrid hydrogel with allogeneic chondrocytes. Biomater Sci 2018;6(6):1616‒26. 链接1

[41] Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng Part A 2016;22(11‒12):899‒906.

[42] Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen type I and II blend hydrogel with autologous mesenchymal stem cells as a scaffold for articular cartilage defect repair. ACS Biomater Sci Eng 2020;6(6):3464‒76. 链接1

[43] Pauly HM, Place LW, Haut Donahue TL, Kipper MJ. Mechanical properties and cell compatibility of agarose hydrogels containing proteoglycan mimetic graft copolymers. Biomacromolecules 2017;18(7):2220‒9. 链接1

[44] Keane TJ, DeWard A, Londono R, Saldin LT, Castleton AA, Carey L, et al. Tissue-specific effects of esophageal extracellular matrix. Tissue Eng Part A 2015;21(17‒18):2293‒300.

[45] Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, et al. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C 2021;118:111388. 链接1

[46] Beck EC, Barragan M, Libeer TB, Kieweg SL, Converse GL, Hopkins RA, et al. Chondroinduction from naturally derived cartilage matrix: a comparison between devitalized and decellularized cartilage encapsulated in hydrogel pastes. Tissue Eng Part A 2016;22(7‒8):665‒79.

[47] Naghizadeh Z, Karkhaneh A, Nokhbatolfoghahaei H, Farzad-Mohajeri S, Rezai-Rad M, Dehghan MM, et al. Cartilage regeneration with dual-drug-releasing injectable hydrogel/microparticle system: in vitro and in vivo study. J Cell Physiol 2021;236(3):2194‒204. 链接1

[48] Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med 2018;4(1):83‒95. 链接1

[49] Chang CH, Chen CC, Liao CH, Lin FH, Hsu YM, Fang HW. Human acellular cartilage matrix powders as a biological scaffold for cartilage tissue engineering with synovium-derived mesenchymal stem cells. J Biomed Mater Res A 2014;102(7):2248‒57. 链接1

[50] Beachley V, Ma G, Papadimitriou C, Gibson M, Corvelli M, Elisseeff J. Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications. J Biomed Mater Res A 2018;106(1):147‒59. 链接1

[51] Levinson C, Cavalli E, Sindi DM, Kessel B, Zenobi-Wong M, Preiss S, et al. Chondrocytes from device-minced articular cartilage show potent outgrowth into fibrin and collagen hydrogels. Orthop J Sports Med 2019;7(9):2325967119867618. 链接1

[52] Christiani T, Mys K, Dyer K, Kadlowec J, Iftode C, Vernengo AJ. Using embedded alginate microparticles to tune the properties of in situ forming poly(N-isopropylacrylamide)-graft-chondroitin sulfate bioadhesive hydrogels for replacement and repair of the nucleus pulposus of the intervertebral disc. JOR Spine 2021;4(3):e1161. 链接1

[53] Xing L, Sun J, Tan H, Yuan G, Li J, Jia Y, et al. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. Int J Biol Macromol 2019;127:340‒8. 链接1

[54] DeVolder RJ, Kim IW, Kim ES, Kong H. Modulating the rigidity and mineralization of collagen gels using poly(lactic-co-glycolic acid) microparticles. Tissue Eng Part A 2012;18(15‒16):1642‒51.

[55] Beck EC, Barragan M, Tadros MH, Kiyotake EA, Acosta FM, Kieweg SL, et al. Chondroinductive hydrogel pastes composed of naturally derived devitalized cartilage. Ann Biomed Eng 2016;44(6):1863‒80. 链接1

[56] Lindberg GCJ, Longoni A, Lim KS, Rosenberg AJ, Hooper GJ, Gawlitta D, et al. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Acta Biomater 2019;85:117‒30. 链接1

[57] Means AK, Shrode CS, Whitney LV, Ehrhardt DA, Grunlan MA. Double network hydrogels that mimic the modulus, strength, and lubricity of cartilage. Biomacromolecules 2019;20(5):2034‒42. 链接1

[58] Milner PE, Parkes M, Puetzer JL, Chapman R, Stevens MM, Cann P, et al. A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. Acta Biomater 2018;65:102‒11. 链接1

[59] Zhang K, Yan W, Simic R, Benetti EM, Spencer ND. Versatile surface modification of hydrogels by surface-initiated, Cu0-mediated controlled radical polymerization. ACS Appl Mater Interfaces 2020;12(5):6761‒7. 链接1

[60] Rong M, Liu H, Scaraggi M, Bai Y, Bao L, Ma S, et al. High lubricity meets load capacity: cartilage mimicking bilayer structure by brushing up stiff hydrogels from subsurface. Adv Funct Mater 2020;30(39):2004062. 链接1

[61] Lin W, Kluzek M, Iuster N, Shimoni E, Kampf N, Goldberg R, et al. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 2020;370(6514):335‒8. 链接1

[62] Xie R, Yao H, Mao AS, Zhu Y, Qi D, Jia Y, et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat Biomed Eng 2021;5(10):1189‒201. 链接1

[63] Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 2009;5(2):670‒9. 链接1

[64] Han Y, Lian M, Wu Q, Qiao Z, Sun B, Dai K. Effect of pore size on cell behavior using melt electrowritten scaffolds. Front Bioeng Biotechnol 2021;9:629270. 链接1

[65] Gupte MJ, Swanson WB, Hu J, Jin X, Ma H, Zhang Z, et al. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 2018;82:1‒11. 链接1

[66] Qazi TH, Tytgat L, Dubruel P, Duda GN, Van Vlierberghe S, Geissler S. Extrusion printed scaffolds with varying pore size as modulators of MSC angiogenic paracrine effects. ACS Biomater Sci Eng 2019;5(10):5348‒58. 链接1

[67] Almeida HV, Cunniffe GM, Vinardell T, Buckley CT, O’Brien FJ, Kelly DJ. Coupling freshly isolated CD44+ infrapatellar fat pad-derived stromal cells with a TGF-β3 eluting cartilage ECM-derived scaffold as a single-stage strategy for promoting chondrogenesis. Adv Healthc Mater 2015;4(7):1043‒53. 链接1

[68] Al-Sabah A, Burnell SEA, Simoes IN, Jessop Z, Badiei N, Blain E, et al. Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydr Polym 2019;212:242‒51. 链接1

[69] Gao X, Gao L, Groth T, Liu T, He D, Wang M, et al. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J Biomed Mater Res A 2019;107(9):2076‒87. 链接1

[70] Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D’Amore A, et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 2012;33(29):7028‒38. 链接1

[71] Qi C, Liu J, Jin Y, Xu L, Wang G, Wang Z, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018;163:89‒104. 链接1

[72] Haung SM, Lin YT, Liu SM, Chen JC, Chen WC. In vitro evaluation of a composite gelatin‒hyaluronic acid‒alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 2021;7(4):165. 链接1

[73] Han LH, Lai JH, Yu S, Yang F. Dynamic tissue engineering scaffolds with stimuli-responsive macroporosity formation. Biomaterials 2013;34(17):4251‒8. 链接1

[74] Dinescu S, Galateanu B, Radu E, Hermenean A, Lungu A, Stancu IC, et al. A 3D porous gelatin-alginate-based-IPN acts as an efficient promoter of chondrogenesis from human adipose-derived stem cells. Stem Cells Int 2015;2015:252909. 链接1

[75] Arnold MP, Daniels AU, Ronken S, García HA, Friederich NF, Kurokawa T, et al. Acrylamide polymer double-network hydrogels: candidate cartilage repair materials with cartilage-like dynamic stiffness and attractive surgery-related attachment mechanics. Cartilage 2011;2(4):374‒83. 链接1

[76] Yu R, Zhang Y, Barboiu M, Maumus M, Noël D, Jorgensen C, et al. Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr Polym 2020;244:116471. 链接1

[77] Owida HA, Yang R, Cen L, Kuiper NJ, Yang Y. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. J R Soc Interface 2018;15(143):20180310. 链接1

[78] Schwab A, Hélary C, Richards RG, Alini M, Eglin D, D’Este M. Tissue mimetic hyaluronan bioink containing collagen fibers with controlled orientation modulating cell migration and alignment. Mater Today Bio 2020;7:100058. 链接1

[79] Moncal KK, Ozbolat V, Datta P, Heo DN, Ozbolat IT. Thermally-controlled extrusion-based bioprinting of collagen. J Mater Sci Mater Med 2019;30(5):55. 链接1

[80] Betsch M, Cristian C, Lin YY, Blaeser A, Schöneberg J, Vogt M, et al. Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Adv Healthc Mater 2018;7(21):e1800894. 链接1

[81] Ren X, Wang F, Chen C, Gong X, Yin L, Yang L. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 2016;17(1):301. 链接1

[82] Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, et al. Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng 2017;‍114(1):217‒31. 链接1

[83] Idaszek J, Costantini M, Karlsen TA, Jaroszewicz J, Colosi C, Testa S, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication 2019;11(4):044101. 链接1

[84] Grogan SP, Pauli C, Chen P, Du J, Chung CB, Kong SD, et al. In situ tissue engineering using magnetically guided three-dimensional cell patterning. Tissue Eng Part C Methods 2012;18(7):496‒506. 链接1

[85] Khorshidi S, Karkhaneh A. A hydrogel/particle composite with gradient in oxygen releasing microparticle for oxygenation of the cartilage-to-bone interface: modeling and experimental viewpoints. Mater Sci Eng C 2021;118:111522. 链接1

[86] Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 2012;18(11‒12):1304‒12.

[87] Zhu D, Trinh P, Liu E, Yang F. Biochemical and mechanical gradients synergize to enhance cartilage zonal organization in 3D. ACS Biomater Sci Eng 2018;4(10):3561‒9. 链接1

[88] Mohan N, Wilson J, Joseph D, Vaikkath D, Nair PD. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: an in vitro study. J Biomed Mater Res A 2015;103(12):3896‒906. 链接1

[89] Han F, Zhou F, Yang X, Zhao J, Zhao Y, Yuan X. A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-β1 and BMP-2 for regeneration of cartilage-bone interface. J Biomed Mater Res B Appl Biomater 2015;103(7):1344‒53. 链接1

[90] Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, et al. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 2021;‍266:120385. 链接1

[91] Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 2012;33(26):6020‒41. 链接1

[92] Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17(4):281‒299. 链接1

[93] Söntjens SH, Nettles DL, Carnahan MA, Setton LA, Grinstaff MW. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 2006;7(1):310‒6. 链接1

[94] Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001;22(23):3145‒54. 链接1

[95] Cheng NC, Estes BT, Young TH, Guilak F. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 2013;19(3‒4):484‒96.

[96] Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S, et al. Advances in injectable self-healing biomedical hydrogels. Acta Biomater 2019;90:1‒20. 链接1

[97] Zhang S, Huang D, Lin H, Xiao Y, Zhang X. Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stress-relaxation properties for cell delivery. Biomacromolecules 2020;21(6):2400‒8. 链接1

[98] Ma F, Ge Y, Liu N, Pang X, Shen X, Tang B. In situ fabrication of a composite hydrogel with tunable mechanical properties for cartilage tissue engineering. J Mater Chem B Mater Biol Med 2019;7(15):2463‒73. 链接1

[99] Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, de la Guardia M. Hydrogel-based 3D bioprinting for bone and cartilage tissue engineering. Biotechnol J 2020;15(12):e2000095. 链接1

[100] Abdulghani S, Morouço PG. Biofabrication for osteochondral tissue regeneration: bioink printability requirements. J Mater Sci Mater Med 2019;30(2):20. 链接1

[101] Beckett LE, Lewis JT, Tonge TK, Korley LTJ. Enhancement of the mechanical properties of hydrogels with continuous fibrous reinforcement. ACS Biomater Sci Eng 2020;6(10):5453‒73. 链接1

[102] Yan X, Chen Q, Zhu L, Chen H, Wei D, Chen F, et al. High strength and self-healable gelatin/polyacrylamide double network hydrogels. J Mater Chem B Mater Biol Med 2017;5(37):7683‒91. 链接1

[103] Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 2011;32(4):1002‒9. 链接1

[104] Xue B, Tang D, Wu X, Xu Z, Gu J, Han Y, et al. Engineering hydrogels with homogeneous mechanical properties for controlling stem cell lineage specification. Proc Natl Acad Sci USA 2021;118(37):e2110961118. 链接1

[105] Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009;324(5923):59‒63. 链接1

[106] Bahney CS, Hsu CW, Yoo JU, West JL, Johnstone B. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J 2011;25(5):1486‒96. 链接1

[107] Wang M, Li J, Li W, Du Z, Qin S. Preparation and characterization of novel poly (vinyl alcohol)/collagen double-network hydrogels. Int J Biol Macromol 2018;118(Pt A):41‒8. 链接1

[108] Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, et al. Natural hydrogels for cartilage regeneration: modification, preparation and application. J Orthop Translat 2018;17:26‒41. 链接1

[109] Medtronic. INFUSE® Bone Graft [Internet]. Medtronic; [updated 2018 Nov; cited 2021 Jun 1]. Available from: https://global.medtronic.com/xg-en/e/response/infuse-bone-graft.html. 链接1

[110] Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016;1(12):1‒17. 链接1

[111] Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 2006;58(12‒13):1379‒1408.

[112] Mir MUH, Maurya JK, Ali S, Ubaid-Ullah S, Khan AB, Patel R. Molecular interaction of cationic gemini surfactant with bovine serum albumin: a spectroscopic and molecular docking study. Process Biochem 2014;‍49(4):623‒30. 链接1

[113] Hiemstra C, Zhong Z, Van Tomme SR, van Steenbergen MJ, Jacobs JJ, Otter WD, et al. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)‍‒‍poly(lactide) hydrogels. J Control Release 2007;‍119(3):320‒7. 链接1

[114] Levinson C, Lee M, Applegate LA, Zenobi-Wong M. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater 2019;99:168‒80. 链接1

[115] Rowan SJ, Cantrill SJ, Cousins GR, Sanders JK, Stoddart JF. Dynamic covalent chemistry. Angew Chem Int Ed Engl 2002;41(6):898‒952. 链接1

[116] Jin R, Moreira Teixeira LS, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 2010;6(6):1968‒77. 链接1

[117] Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017;62:29‒41. 链接1

[118] Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, et al. Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci USA 2012;109(48):19590‒5. 链接1

[119] Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable cryogels for biomedical applications. Trends Biotechnol 2020;38(4):418‒31. 链接1

[120] Han ME, Kim SH, Kim HD, Yim HG, Bencherif SA, Kim TI, et al. Extracellular matrix-based cryogels for cartilage tissue engineering. Int J Biol Macromol 2016;93(Pt B):1410‒9. 链接1

[121] Bölgen N, Yang Y, Korkusuz P, Güzel E, El Haj AJ, Pişkin E. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J Tissue Eng Regen Med 2011;5(10):770‒9. 链接1

[122] Hwang Y, Sangaj N, Varghese S. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Tissue Eng Part A 2010;16(10):3033‒41. 链接1

[123] Chen CH, Kuo CY, Wang YJ, Chen JP. Dual function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering. Int J Mol Sci 2016;17(11):1957. 链接1

[124] Wang L, Rao RR, Stegemann JP. Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair. Cells Tissues Organs 2013;197(5):333‒43. 链接1

[125] Li F, Truong VX, Fisch P, Levinson C, Glattauer V, Zenobi-Wong M, et al. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater 2018;77:48‒62. 链接1

[126] Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017;5(1):17014. 链接1

[127] Reyes R, Delgado A, Sánchez E, Fernández A, Hernández A, Evora C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med 2014;8(7):521‒33.

[128] Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 2014;6(3):035020. 链接1

[129] Maudens P, Seemayer CA, Pfefferlé F, Jordan O, Allémann E. Nanocrystals of a potent p38 MAPK inhibitor embedded in microparticles: therapeutic effects in inflammatory and mechanistic murine models of osteoarthritis. J Control Release 2018;276:102‒12. 链接1

[130] Maudens P, Seemayer CA, Thauvin C, Gabay C, Jordan O, Allémann E. Nanocrystal‍‒‍polymer particles: extended delivery carriers for osteoarthritis treatment. Small 2018;14(8):1703108. 链接1

[131] Maudens P, Meyer S, Seemayer CA, Jordan O, Allémann E. Self-assembled thermoresponsive nanostructures of hyaluronic acid conjugates for osteoarthritis therapy. Nanoscale 2018;10(4):1845‒54. 链接1

[132] Maudens P, Jordan O, Allémann E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug Discov Today 2018;23(10):1761‒75. 链接1

[133] Tamesue S, Endo T, Ueno Y, Tsurumaki F. Sewing hydrogels: adhesion of hydrogels utilizing in situ polymerization of linear polymers inside gel networks. Macromolecules 2019;52(15):5690‒7. 链接1

[134] Lee TT, García JR, Paez JI, Singh A, Phelps EA, Weis S, et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 2015;14(3):352‒60. 链接1

[135] Yang Y, Zhang J, Liu Z, Lin Q, Liu X, Bao C, et al. Tissue-integratable and biocompatible photogelation by the imine crosslinking reaction. Adv Mater 2016;28(14):2724‒30. 链接1

[136] Zhou F, Hong Y, Zhang X, Yang L, Li J, Jiang D, et al. Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair. Appl Mater Today 2018;13:32‒44. 链接1

[137] Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of hydrogel materials with perfusable microchannels for building vascularized tissues. Small 2020;16(15):e1902838. 链接1

[138] Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog Polym Sci 2019;92:135‒57. 链接1

[139] Foyt DA, Norman MDA, Yu TTL, Gentleman E. Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Healthc Mater 2018;7(8):e1700939. 链接1

[140] Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci 2021;22(8):3971. 链接1

[141] Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, et al. Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 2017;29(19):1606061. 链接1

[142] Gao G, Yonezawa T, Hubbell K, Dai G, Cui X. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 2015;10(10):1568‒77. 链接1

[143] Teo MY, Kee S, RaviChandran N, Stuart L, Aw KC, Stringer J. Enabling free-standing 3D hydrogel microstructures with microreactive inkjet printing. ACS Appl Mater Interfaces 2020;12(1):1832‒9. 链接1

[144] Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, et al. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 2011;17(1):79‒87. 链接1

[145] Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 2017;57:1‒25. 链接1

[146] Zandi N, Sani ES, Mostafavi E, Ibrahim DM, Saleh B, Shokrgozar MA, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials 2021;267:120476. 链接1

[147] Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 2015;1(9):e1500758. 链接1

[148] Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng 2021;5(1):010904. 链接1

[149] O’Connell CD, Di Bella C, Thompson F, Augustine C, Beirne S, Cornock R, et al. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 2016;8(1):015019. 链接1

[150] Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 2018;12(3):611‒21. 链接1

[151] Duchi S, Onofrillo C, O’Connell CD, Blanchard R, Augustine C, Quigley AF, et al. Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep 2017;7(1):5837. 链接1

[152] O’Connell CD, Konate S, Onofrillo C, Kapsa R, Baker C, Duchi S, et al. Free-form co-axial bioprinting of a gelatin methacryloyl bio-ink by direct in situ photo-crosslinking during extrusion. Bioprinting 2020;19:19. 链接1

[153] Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 2016;6(1):28714. 链接1

[154] Castilho M, Levato R, Bernal PN, de Ruijter M, Sheng CY, van Duijn J, et al. Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromolecules 2021;22(2):855‒66. 链接1

[155] Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol 2018;36(4):384‒402. 链接1

[156] Hong H, Seo YB, Kim DY, Lee JS, Lee YJ, Lee H, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 2020;232:119679. 链接1

[157] Aisenbrey EA, Tomaschke A, Kleinjan E, Muralidharan A, Pascual-Garrido C, McLeod RR, et al. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol Biosci 2018;18(2):1700267. 链接1

[158] Agostinacchio F, Mu X, Dirè S, Motta A, Kaplan DL. In situ 3D printing: opportunities with silk inks. Trends Biotechnol 2021;39(7):719‒30. 链接1

[159] Li L, Yu F, Shi J, Shen S, Teng H, Yang J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep 2017;7(1):9416. 链接1

[160] Ma K, Zhao T, Yang L, Wang P, Jin J, Teng H, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res 2020;23:123‒32. 链接1

[161] Imam SS, Hussain A, Altamimi MA, Alshehri S. Four-dimensional printing for hydrogel: theoretical concept, 4D materials, shape-morphing way, and future perspectives. Polymers 2021;13(21):3858. 链接1

[162] Champeau M, Heinze DA, Viana TN, de Souza ER, Chinellato AC, Titotto S. 4D printing of hydrogels: a review. Adv Funct Mater 2020;30(31):1910606. 链接1

[163] Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413‒18. 链接1

[164] Hua M, Wu D, Wu S, Ma Y, Alsaid Y, He X. 4D printable tough and thermoresponsive hydrogels. ACS Appl Mater Interfaces 2021;13(11):12689‒97. 链接1

[165] Ramaraju H, Akman RE, Safranski DL, Hollister SJ. Designing biodegradable shape memory polymers for tissue repair. Adv Funct Mater 2020;30(44):2002014. 链接1

[166] Almeida HV, Sathy BN, Dudurych I, Buckley CT, O’Brien FJ, Kelly DJ. Anisotropic shape-memory alginate scaffolds functionalized with either type I or type II collagen for cartilage tissue engineering. Tissue Eng Part A 2017;23(1‒2):55‒68.



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭