Flink链路延迟监控的LatencyMarker机制实现

您所在的位置:网站首页 任务的读法 Flink链路延迟监控的LatencyMarker机制实现

Flink链路延迟监控的LatencyMarker机制实现

2024-07-11 13:38:53| 来源: 网络整理| 查看: 265

前言

今天本应放一首适合高考气氛的歌的,但是既然受疫情影响推迟了,还是老老实实写点技术相关的吧。

对于实时的流式处理系统来说,我们需要关注数据输入、计算和输出的及时性,所以处理延迟是一个比较重要的监控指标,特别是在数据量大或者软硬件条件不佳的环境下。Flink早在FLINK-3660就为用户提供了开箱即用的链路延迟监控功能,只需要配置好metrics.latency.interval参数,再观察TaskManagerJobMetricGroup/operator_id/operator_subtask_index/latency这个metric即可。本文简单walk一下源码,看看它是如何实现的,并且简要说明注意事项。

LatencyMarker的产生

与通过水印来标记事件时间的推进进度相似,Flink也用一种特殊的流元素(StreamElement)作为延迟的标记,称为LatencyMarker。

LatencyMarker的数据结构甚简单,只有3个field,即它被创建时携带的时间戳、算子ID和算子并发实例(sub-task)的ID。

 

private final long markedTime; private final OperatorID operatorId; private final int subtaskIndex;

LatencyMarker和水印不同,不需要通过用户抽取产生,而是在Source端自动按照metrics.latency.interval参数指定的周期生成。StreamSource专门实现了一个内部类LatencyMarksEmitter用来发射LatencyMarker,而它又借用了负责协调处理时间的服务ProcessingTimeService(之前的文章已经多次提到过),如下代码所示。

 

LatencyMarksEmitter latencyEmitter = null; if (latencyTrackingInterval > 0) { latencyEmitter = new LatencyMarksEmitter( getProcessingTimeService(), collector, latencyTrackingInterval, this.getOperatorID(), getRuntimeContext().getIndexOfThisSubtask()); } private static class LatencyMarksEmitter { private final ScheduledFuture latencyMarkTimer; public LatencyMarksEmitter( final ProcessingTimeService processingTimeService, final Output output, long latencyTrackingInterval, final OperatorID operatorId, final int subtaskIndex) { latencyMarkTimer = processingTimeService.scheduleAtFixedRate( new ProcessingTimeCallback() { @Override public void onProcessingTime(long timestamp) throws Exception { try { // ProcessingTimeService callbacks are executed under the checkpointing lock output.emitLatencyMarker(new LatencyMarker(processingTimeService.getCurrentProcessingTime(), operatorId, subtaskIndex)); } catch (Throwable t) { // we catch the Throwables here so that we don't trigger the processing // timer services async exception handler LOG.warn("Error while emitting latency marker.", t); } } }, 0L, latencyTrackingInterval); } public void close() { latencyMarkTimer.cancel(true); } }

通过调用Output.emitLatencyMarker()方法,LatencyMarker就会随着数据流一起传递到下游了。

LatencyMarker的粒度

AbstractStreamOperator是所有Flink Streaming算子的基类,在它的初始化方法setup()中,会先创建用于延迟统计的LatencyStats实例。

 

final String configuredGranularity = taskManagerConfig.getString(MetricOptions.LATENCY_SOURCE_GRANULARITY); LatencyStats.Granularity granularity; try { granularity = LatencyStats.Granularity.valueOf(configuredGranularity.toUpperCase(Locale.ROOT)); } catch (IllegalArgumentException iae) { granularity = LatencyStats.Granularity.OPERATOR; LOG.warn( "Configured value {} option for {} is invalid. Defaulting to {}.", configuredGranularity, MetricOptions.LATENCY_SOURCE_GRANULARITY.key(), granularity); } TaskManagerJobMetricGroup jobMetricGroup = this.metrics.parent().parent(); this.latencyStats = new LatencyStats(jobMetricGroup.addGroup("latency"), historySize, container.getIndexInSubtaskGroup(), getOperatorID(), granularity);

在创建LatencyStats之前,先要根据metrics.latency.granularity配置项来确定延迟监控的粒度,分为以下3档:

single:每个算子单独统计延迟;operator(默认值):每个下游算子都统计自己与Source算子之间的延迟;subtask:每个下游算子的sub-task都统计自己与Source算子的sub-task之间的延迟。

一般情况下采用默认的operator粒度即可,这样在Sink端观察到的latency metric就是我们最想要的全链路(端到端)延迟,以下也是以该粒度讲解。subtask粒度太细,会增大所有并行度的负担,不建议使用。

LatencyMarker的流转与计量

AbstractStreamOperator分别提供了用于单输入流算子OneInputStreamOperator、双输入流算子TwoInputStreamOperator的LatencyMarker处理方法。

 

// ------- One input stream public void processLatencyMarker(LatencyMarker latencyMarker) throws Exception { reportOrForwardLatencyMarker(latencyMarker); } // ------- Two input stream public void processLatencyMarker1(LatencyMarker latencyMarker) throws Exception { reportOrForwardLatencyMarker(latencyMarker); } public void processLatencyMarker2(LatencyMarker latencyMarker) throws Exception { reportOrForwardLatencyMarker(latencyMarker); } protected void reportOrForwardLatencyMarker(LatencyMarker marker) { // all operators are tracking latencies this.latencyStats.reportLatency(marker); // everything except sinks forwards latency markers this.output.emitLatencyMarker(marker); }

这些方法都会做两件事,一是计算延时并报告给LatencyStats,二是继续将LatencyMarker发射到下游。不妨来看看RecordWriterOutput.emitLatencyMarker()方法的具体实现。

 

@Override public void emitLatencyMarker(LatencyMarker latencyMarker) { serializationDelegate.setInstance(latencyMarker); try { recordWriter.randomEmit(serializationDelegate); } catch (Exception e) { throw new RuntimeException(e.getMessage(), e); } } /** * This is used to send LatencyMarks to a random target channel. */ public void randomEmit(T record) throws IOException, InterruptedException { emit(record, rng.nextInt(numberOfChannels)); }

可见是从该算子所有的输出channel中随机选择一条来发射LatencyMarker,这样在度量算子级别延迟的基础上不会造成LatencyMarker泛滥,同时也不会受到并行度调整(重新分区)的影响。

注意StreamSink的reportOrForwardLatencyMarker()方法不会再发射LatencyMarker(因为已经处理完了),只会更新延迟。

 

@Override protected void reportOrForwardLatencyMarker(LatencyMarker marker) { // all operators are tracking latencies this.latencyStats.reportLatency(marker); // sinks don't forward latency markers }

LatencyStats中的延迟最终会转化为直方图表示,通过直方图就可以统计出延时的最大值、最小值、均值、分位值(quantile)等指标。以下是reportLatency()方法的源码。

 

public void reportLatency(LatencyMarker marker) { final String uniqueName = granularity.createUniqueHistogramName(marker, operatorId, subtaskIndex); DescriptiveStatisticsHistogram latencyHistogram = this.latencyStats.get(uniqueName); if (latencyHistogram == null) { latencyHistogram = new DescriptiveStatisticsHistogram(this.historySize); this.latencyStats.put(uniqueName, latencyHistogram); granularity.createSourceMetricGroups(metricGroup, marker, operatorId, subtaskIndex) .addGroup("operator_id", String.valueOf(operatorId)) .addGroup("operator_subtask_index", String.valueOf(subtaskIndex)) .histogram("latency", latencyHistogram); } long now = System.currentTimeMillis(); latencyHistogram.update(now - marker.getMarkedTime()); }

可见,延迟是由当前时间戳减去LatencyMarker携带的时间戳得到的,所以在Sink端统计到的就是全链路延迟了。

注意事项

由以上分析可知,LatencyMarker是不会像Watermark一样参与到数据流的用户逻辑中的,而是直接被各算子转发并统计。这如何能得到真正的延时呢?如果由于网络不畅、数据流量太大等原因造成了反压(back pressure,之后再提),那么LatencyMarker的流转就会被阻碍,传递到下游的时间差就会增加,所以还是能够近似估算出整体的延时的。为了让它尽量精确,有两点特别需要注意:

ProcessingTimeService产生时间戳最终是靠System.currentTimeMillis()方法,所以必须保证Flink集群内所有节点的时区、时间是同步的,可以用ntp等工具来配置。metrics.latency.interval的时间间隔宜大不宜小,在我们的实践中一般配置成30000(30秒)左右。一是因为延迟监控的频率可以不用太频繁,二是因为LatencyMarker的处理也要消耗时间,只有在LatencyMarker的耗时远小于正常StreamRecord的耗时时,metric反映出的数据才贴近实际情况,所以LatencyMarker的密度不能太大。 The End

待会该买菜做饭了,就这样吧。

民那周末愉快(不是



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭