多柔比星

您所在的位置:网站首页 doxy是什么药 多柔比星

多柔比星

2024-07-15 00:13:40| 来源: 网络整理| 查看: 265

Doxorubicin: the good, the bad and the ugly effect

The anthracycline doxorubicin (DOX) is widely used in chemotherapy due to its efficacy in fighting a wide range of cancers such as carcinomas, sarcomas and hematological cancers. Despite extensive clinical utilization, the mechanisms of action of DOX remain under intense debate. A growing body of evidence supports the view that this drug can be a double-edge sword. Indeed, injury to nontargeted tissues often complicates cancer treatment by limiting therapeutic dosages of DOX and diminishing the quality of patients' life during and after DOX treatment. The literature shows that the heart is a preferential target of DOX toxicity. However, this anticancer drug also affects other organs like the brain, kidney and liver. This review is mainly devoted to discuss the mechanisms underlying not only DOX beneficial effects but also its toxic outcomes. Additionally, clinical studies focusing the therapeutic efficacy and side effects of DOX treatment will be discussed. Finally, some potential strategies to attenuate DOX-induced toxicity will be debated.

Clinical pharmacokinetics of doxorubicin

Doxorubicin (adriamycin) has a very wide antitumour spectrum, compared with other anticancer drugs; however, except for Hodgkin's disease, it is not associated with curative chemotherapy. Doxorubicin has been in clinical use for more than 2 decades, and only recently has it been recognised that the cytotoxic effect is produced at the cellular level by multiple mechanisms which have not yet been conclusively identified. Key factors are a combination of doxorubicin-induced free radical formation due to metabolic activation, deleterious actions at the level of the membrane, and drug-intercalation into DNA. Multiple aspects of the clinical pharmacokinetics of this drug have been described. Wide interpatient variations in plasma pharmacokinetics have been noted, but without firm relation to clinical outcome. An apparent volume of distribution of approximately 25 L/kg points to extensive uptake by tissues. Up to several weeks after administration, significant concentrations of doxorubicin have been found in haematopoietic cells and in several other tissues. The maximum cellular doxorubicin concentrations reached in vivo remain significantly below those at which all clonogenic leukaemic cells are killed in vitro. Doxorubicin has been administered as frequent (weekly) low doses, single high doses, and as a continuous infusion. The optimal schedule with respect to tumour cytotoxicity and dose-limiting side effects such as myelosuppression or cardiotoxicity, has never been investigated in a prospective, randomised manner. Clinical trials large enough to study optimal, and possibly individualised, doxorubicin chemotherapy need to be performed. This review summarises pharmacological and pharmacodynamic data of doxorubicin, and discusses these in relation to possible improvement of its therapeutic index. Furthermore, drug interactions, dose-response relationships, mechanisms of action, multidrug resistance, and treatment scheduling are discussed in the perspective of the development of novel treatment strategies.

The Synthesis of Nano-Doxorubicin and its Anticancer Effect

Doxorubicin (DOX) is widely used as a clinical first-line anti-cancer drug. However, its clinical application is severely limited due to the lack of tumor specificity of the drug and severe side effects such as myelosuppression, nephrotoxicity, dose-dependent cardiotoxicity, and multi-drug resistance. To improve the bioavailability of DOX, maximize the therapeutic effect, and reduce its toxicity and side effects, many studies have been done on the nanoformulations of DOX, such as liposomes, polymer micelles, dendrimer, and nanogels. Herein, we review the latest progress of DOX nano-preparations and their anti-tumor effects, hoping to provide theoretical references and new research ideas for the development of new dosage forms of the drug and the technical methods available for clinical application.

Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review

The scarcity of novel and effective therapeutics for the treatment of cancer is a pressing and alarming issue that needs to be prioritized. The number of cancer cases and deaths are increasing at a rapid rate worldwide. Doxorubicin, an anticancer agent, is currently used to treat several types of cancer. It disrupts myriad processes such as histone eviction, ceramide overproduction, DNA-adduct formation, reactive oxygen species generation, Ca2+, and iron hemostasis regulation. However, its use is limited by factors such as drug resistance, toxicity, and congestive heart failure reported in some patients. The combination of doxorubicin with other chemotherapeutic agents has been reported as an effective treatment option for cancer with few side effects. Thus, the hybridization of doxorubicin and other chemotherapeutic drugs is regarded as a promising approach that can lead to effective anticancer agents. This review gives an update on hybrid compounds containing the scaffolds of doxorubicin and its derivatives with potent chemotherapeutic effects.



【本文地址】

公司简介

联系我们

今日新闻


点击排行

实验室常用的仪器、试剂和
说到实验室常用到的东西,主要就分为仪器、试剂和耗
不用再找了,全球10大实验
01、赛默飞世尔科技(热电)Thermo Fisher Scientif
三代水柜的量产巅峰T-72坦
作者:寞寒最近,西边闹腾挺大,本来小寞以为忙完这
通风柜跟实验室通风系统有
说到通风柜跟实验室通风,不少人都纠结二者到底是不
集消毒杀菌、烘干收纳为一
厨房是家里细菌较多的地方,潮湿的环境、没有完全密
实验室设备之全钢实验台如
全钢实验台是实验室家具中较为重要的家具之一,很多

推荐新闻


图片新闻

实验室药品柜的特性有哪些
实验室药品柜是实验室家具的重要组成部分之一,主要
小学科学实验中有哪些教学
计算机 计算器 一般 打孔器 打气筒 仪器车 显微镜
实验室各种仪器原理动图讲
1.紫外分光光谱UV分析原理:吸收紫外光能量,引起分
高中化学常见仪器及实验装
1、可加热仪器:2、计量仪器:(1)仪器A的名称:量
微生物操作主要设备和器具
今天盘点一下微生物操作主要设备和器具,别嫌我啰嗦
浅谈通风柜使用基本常识
 众所周知,通风柜功能中最主要的就是排气功能。在

专题文章

    CopyRight 2018-2019 实验室设备网 版权所有 win10的实时保护怎么永久关闭