GitHub 您所在的位置:网站首页 鼓励孩子备战高考的话语有哪些 GitHub

GitHub

2024-04-08 16:46| 来源: 网络整理| 查看: 265

📖 Github    |    📚 Docsify 简体中文    |    English

💡 关于

📚 本仓库是面向 C/C++ 技术方向校招求职者、初学者的基础知识总结,包括语言、程序库、数据结构、算法、系统、网络、链接装载库等知识及面试经验、招聘、内推等信息。

💡 侧边目录支持方式:📚 Docsify 文档、Github + TOC 导航(TOC预览.png)

📄 保存为 PDF 方式:使用 Chrome 浏览器打开 📚 Docsify 文档 页面,缩起左侧目录-右键 - 打印 - 选择目标打印机是另存为PDF - 保存(打印预览.png)

🙏 仓库内容如有错误或改进欢迎 issue 或 pr,建议或讨论可在 #12 提出。由于本人水平有限,仓库中的知识点有来自本人原创、读书笔记、书籍、博文等,非原创均已标明出处,如有遗漏,请 issue 提出。本仓库遵循 CC BY-NC-SA 4.0(署名 - 非商业性使用 - 相同方式共享) 协议,转载请注明出处,不得用于商业目的。

📑 目录 ➕ C/C++ ⭐️ Effective 📦 STL 〽️ 数据结构 ⚡️ 算法 ❓ Problems 💻 操作系统 ☁️ 计算机网络 🌩 网络编程 💾 数据库 📏 设计模式 ⚙️ 链接装载库 📚 书籍 🔱 C/C++ 发展方向 💯 复习刷题网站 📝 面试题目经验 📆 招聘时间岗位 👍 内推 👬 贡献者 📜 License

➕ C/C++ const 作用 修饰变量,说明该变量不可以被改变; 修饰指针,分为指向常量的指针(pointer to const)和自身是常量的指针(常量指针,const pointer); 修饰引用,指向常量的引用(reference to const),用于形参类型,即避免了拷贝,又避免了函数对值的修改; 修饰成员函数,说明该成员函数内不能修改成员变量。 const 的指针与引用 指针 指向常量的指针(pointer to const) 自身是常量的指针(常量指针,const pointer) 引用 指向常量的引用(reference to const) 没有 const reference,因为引用只是对象的别名,引用不是对象,不能用 const 修饰

(为了方便记忆可以想成)被 const 修饰(在 const 后面)的值不可改变,如下文使用例子中的 p2、p3

使用

const 使用

// 类 class A { private: const int a; // 常对象成员,可以使用初始化列表或者类内初始化 public: // 构造函数 A() : a(0) { }; A(int x) : a(x) { }; // 初始化列表 // const可用于对重载函数的区分 int getValue(); // 普通成员函数 int getValue() const; // 常成员函数,不得修改类中的任何数据成员的值 }; void function() { // 对象 A b; // 普通对象,可以调用全部成员函数 const A a; // 常对象,只能调用常成员函数 const A *p = &a; // 指针变量,指向常对象 const A &q = a; // 指向常对象的引用 // 指针 char greeting[] = "Hello"; char* p1 = greeting; // 指针变量,指向字符数组变量 const char* p2 = greeting; // 指针变量,指向字符数组常量(const 后面是 char,说明指向的字符(char)不可改变) char* const p3 = greeting; // 自身是常量的指针,指向字符数组变量(const 后面是 p3,说明 p3 指针自身不可改变) const char* const p4 = greeting; // 自身是常量的指针,指向字符数组常量 } // 函数 void function1(const int Var); // 传递过来的参数在函数内不可变 void function2(const char* Var); // 参数指针所指内容为常量 void function3(char* const Var); // 参数指针为常量 void function4(const int& Var); // 引用参数在函数内为常量 // 函数返回值 const int function5(); // 返回一个常数 const int* function6(); // 返回一个指向常量的指针变量,使用:const int *p = function6(); int* const function7(); // 返回一个指向变量的常指针,使用:int* const p = function7(); 宏定义 #define 和 const 常量 宏定义 #define const 常量 宏定义,相当于字符替换 常量声明 预处理器处理 编译器处理 无类型安全检查 有类型安全检查 不分配内存 要分配内存 存储在代码段 存储在数据段 可通过 #undef 取消 不可取消 static 作用 修饰普通变量,修改变量的存储区域和生命周期,使变量存储在静态区,在 main 函数运行前就分配了空间,如果有初始值就用初始值初始化它,如果没有初始值系统用默认值初始化它。 修饰普通函数,表明函数的作用范围,仅在定义该函数的文件内才能使用。在多人开发项目时,为了防止与他人命名空间里的函数重名,可以将函数定位为 static。 修饰成员变量,修饰成员变量使所有的对象只保存一个该变量,而且不需要生成对象就可以访问该成员。 修饰成员函数,修饰成员函数使得不需要生成对象就可以访问该函数,但是在 static 函数内不能访问非静态成员。 this 指针 this 指针是一个隐含于每一个非静态成员函数中的特殊指针。它指向调用该成员函数的那个对象。 当对一个对象调用成员函数时,编译程序先将对象的地址赋给 this 指针,然后调用成员函数,每次成员函数存取数据成员时,都隐式使用 this 指针。 当一个成员函数被调用时,自动向它传递一个隐含的参数,该参数是一个指向这个成员函数所在的对象的指针。 this 指针被隐含地声明为: ClassName *const this,这意味着不能给 this 指针赋值;在 ClassName 类的 const 成员函数中,this 指针的类型为:const ClassName* const,这说明不能对 this 指针所指向的这种对象是不可修改的(即不能对这种对象的数据成员进行赋值操作); this 并不是一个常规变量,而是个右值,所以不能取得 this 的地址(不能 &this)。 在以下场景中,经常需要显式引用 this 指针: 为实现对象的链式引用; 为避免对同一对象进行赋值操作; 在实现一些数据结构时,如 list。 inline 内联函数 特征 相当于把内联函数里面的内容写在调用内联函数处; 相当于不用执行进入函数的步骤,直接执行函数体; 相当于宏,却比宏多了类型检查,真正具有函数特性; 编译器一般不内联包含循环、递归、switch 等复杂操作的内联函数; 在类声明中定义的函数,除了虚函数的其他函数都会自动隐式地当成内联函数。 使用

inline 使用

// 声明1(加 inline,建议使用) inline int functionName(int first, int second,...); // 声明2(不加 inline) int functionName(int first, int second,...); // 定义 inline int functionName(int first, int second,...) {/****/}; // 类内定义,隐式内联 class A { int doA() { return 0; } // 隐式内联 } // 类外定义,需要显式内联 class A { int doA(); } inline int A::doA() { return 0; } // 需要显式内联 编译器对 inline 函数的处理步骤 将 inline 函数体复制到 inline 函数调用点处; 为所用 inline 函数中的局部变量分配内存空间; 将 inline 函数的的输入参数和返回值映射到调用方法的局部变量空间中; 如果 inline 函数有多个返回点,将其转变为 inline 函数代码块末尾的分支(使用 GOTO)。 优缺点

优点

内联函数同宏函数一样将在被调用处进行代码展开,省去了参数压栈、栈帧开辟与回收,结果返回等,从而提高程序运行速度。 内联函数相比宏函数来说,在代码展开时,会做安全检查或自动类型转换(同普通函数),而宏定义则不会。 在类中声明同时定义的成员函数,自动转化为内联函数,因此内联函数可以访问类的成员变量,宏定义则不能。 内联函数在运行时可调试,而宏定义不可以。

缺点

代码膨胀。内联是以代码膨胀(复制)为代价,消除函数调用带来的开销。如果执行函数体内代码的时间,相比于函数调用的开销较大,那么效率的收获会很少。另一方面,每一处内联函数的调用都要复制代码,将使程序的总代码量增大,消耗更多的内存空间。 inline 函数无法随着函数库升级而升级。inline函数的改变需要重新编译,不像 non-inline 可以直接链接。 是否内联,程序员不可控。内联函数只是对编译器的建议,是否对函数内联,决定权在于编译器。 虚函数(virtual)可以是内联函数(inline)吗?

Are "inline virtual" member functions ever actually "inlined"?

虚函数可以是内联函数,内联是可以修饰虚函数的,但是当虚函数表现多态性的时候不能内联。 内联是在编译期建议编译器内联,而虚函数的多态性在运行期,编译器无法知道运行期调用哪个代码,因此虚函数表现为多态性时(运行期)不可以内联。 inline virtual 唯一可以内联的时候是:编译器知道所调用的对象是哪个类(如 Base::who()),这只有在编译器具有实际对象而不是对象的指针或引用时才会发生。

虚函数内联使用

#include using namespace std; class Base { public: inline virtual void who() { cout who(); // 因为Base有虚析构函数(virtual ~Base() {}),所以 delete 时,会先调用派生类(Derived)析构函数,再调用基类(Base)析构函数,防止内存泄漏。 delete ptr; ptr = nullptr; system("pause"); return 0; } volatile volatile int i = 10; volatile 关键字是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素(操作系统、硬件、其它线程等)更改。所以使用 volatile 告诉编译器不应对这样的对象进行优化。 volatile 关键字声明的变量,每次访问时都必须从内存中取出值(没有被 volatile 修饰的变量,可能由于编译器的优化,从 CPU 寄存器中取值) const 可以是 volatile (如只读的状态寄存器) 指针可以是 volatile assert()

断言,是宏,而非函数。assert 宏的原型定义在 (C)、(C++)中,其作用是如果它的条件返回错误,则终止程序执行。可以通过定义 NDEBUG 来关闭 assert,但是需要在源代码的开头,include 之前。

assert() 使用

#define NDEBUG // 加上这行,则 assert 不可用 #include assert( p != NULL ); // assert 不可用 sizeof() sizeof 对数组,得到整个数组所占空间大小。 sizeof 对指针,得到指针本身所占空间大小。 #pragma pack(n)

设定结构体、联合以及类成员变量以 n 字节方式对齐

#pragma pack(n) 使用

#pragma pack(push) // 保存对齐状态 #pragma pack(4) // 设定为 4 字节对齐 struct test { char m1; double m4; int m3; }; #pragma pack(pop) // 恢复对齐状态 位域 Bit mode: 2; // mode 占 2 位

类可以将其(非静态)数据成员定义为位域(bit-field),在一个位域中含有一定数量的二进制位。当一个程序需要向其他程序或硬件设备传递二进制数据时,通常会用到位域。

位域在内存中的布局是与机器有关的 位域的类型必须是整型或枚举类型,带符号类型中的位域的行为将因具体实现而定 取地址运算符(&)不能作用于位域,任何指针都无法指向类的位域 extern "C" 被 extern 限定的函数或变量是 extern 类型的 被 extern "C" 修饰的变量和函数是按照 C 语言方式编译和链接的

extern "C" 的作用是让 C++ 编译器将 extern "C" 声明的代码当作 C 语言代码处理,可以避免 C++ 因符号修饰导致代码不能和C语言库中的符号进行链接的问题。

extern "C" 使用

#ifdef __cplusplus extern "C" { #endif void *memset(void *, int, size_t); #ifdef __cplusplus } #endif struct 和 typedef struct C 中 // c typedef struct Student { int age; } S;

等价于

// c struct Student { int age; }; typedef struct Student S;

此时 S 等价于 struct Student,但两个标识符名称空间不相同。

另外还可以定义与 struct Student 不冲突的 void Student() {}。

C++ 中

由于编译器定位符号的规则(搜索规则)改变,导致不同于C语言。

一、如果在类标识符空间定义了 struct Student {...};,使用 Student me; 时,编译器将搜索全局标识符表,Student 未找到,则在类标识符内搜索。

即表现为可以使用 Student 也可以使用 struct Student,如下:

// cpp struct Student { int age; }; void f( Student me ); // 正确,"struct" 关键字可省略

二、若定义了与 Student 同名函数之后,则 Student 只代表函数,不代表结构体,如下:

typedef struct Student { int age; } S; void Student() {} // 正确,定义后 "Student" 只代表此函数 //void S() {} // 错误,符号 "S" 已经被定义为一个 "struct Student" 的别名 int main() { Student(); struct Student me; // 或者 "S me"; return 0; } C++ 中 struct 和 class

总的来说,struct 更适合看成是一个数据结构的实现体,class 更适合看成是一个对象的实现体。

区别 最本质的一个区别就是默认的访问控制 默认的继承访问权限。struct 是 public 的,class 是 private 的。 struct 作为数据结构的实现体,它默认的数据访问控制是 public 的,而 class 作为对象的实现体,它默认的成员变量访问控制是 private 的。 union 联合

联合(union)是一种节省空间的特殊的类,一个 union 可以有多个数据成员,但是在任意时刻只有一个数据成员可以有值。当某个成员被赋值后其他成员变为未定义状态。联合有如下特点:

默认访问控制符为 public 可以含有构造函数、析构函数 不能含有引用类型的成员 不能继承自其他类,不能作为基类 不能含有虚函数 匿名 union 在定义所在作用域可直接访问 union 成员 匿名 union 不能包含 protected 成员或 private 成员 全局匿名联合必须是静态(static)的

union 使用

#include union UnionTest { UnionTest() : i(10) {}; int i; double d; }; static union { int i; double d; }; int main() { UnionTest u; union { int i; double d; }; std::cout x ; std::cout using std::cin; using std::cout; using std::endl; int x; cin >> x; cout // 尾置返回允许我们在参数列表之后声明返回类型 template auto fcn(It beg, It end) -> decltype(*beg) { // 处理序列 return *beg; // 返回序列中一个元素的引用 } // 为了使用模板参数成员,必须用 typename template auto fcn2(It beg, It end) -> typename remove_reference::type { // 处理序列 return *beg; // 返回序列中一个元素的拷贝 } 引用 左值引用

常规引用,一般表示对象的身份。

右值引用

右值引用就是必须绑定到右值(一个临时对象、将要销毁的对象)的引用,一般表示对象的值。

右值引用可实现转移语义(Move Sementics)和精确传递(Perfect Forwarding),它的主要目的有两个方面:

消除两个对象交互时不必要的对象拷贝,节省运算存储资源,提高效率。 能够更简洁明确地定义泛型函数。 引用折叠 X& &、X& &&、X&& & 可折叠成 X& X&& && 可折叠成 X&& 宏 宏定义可以实现类似于函数的功能,但是它终归不是函数,而宏定义中括弧中的“参数”也不是真的参数,在宏展开的时候对 “参数” 进行的是一对一的替换。 成员初始化列表

好处

更高效:少了一次调用默认构造函数的过程。 有些场合必须要用初始化列表: 常量成员,因为常量只能初始化不能赋值,所以必须放在初始化列表里面 引用类型,引用必须在定义的时候初始化,并且不能重新赋值,所以也要写在初始化列表里面 没有默认构造函数的类类型,因为使用初始化列表可以不必调用默认构造函数来初始化 initializer_list 列表初始化

用花括号初始化器列表初始化一个对象,其中对应构造函数接受一个 std::initializer_list 参数.

initializer_list 使用

#include #include #include template struct S { std::vector v; S(std::initializer_list l) : v(l) { std::cout 派生类(子类) 多态 多态,即多种状态(形态)。简单来说,我们可以将多态定义为消息以多种形式显示的能力。 多态是以封装和继承为基础的。 C++ 多态分类及实现: 重载多态(Ad-hoc Polymorphism,编译期):函数重载、运算符重载 子类型多态(Subtype Polymorphism,运行期):虚函数 参数多态性(Parametric Polymorphism,编译期):类模板、函数模板 强制多态(Coercion Polymorphism,编译期/运行期):基本类型转换、自定义类型转换

The Four Polymorphisms in C++

静态多态(编译期/早绑定)

函数重载

class A { public: void do(int a); void do(int a, int b); }; 动态多态(运行期期/晚绑定) 虚函数:用 virtual 修饰成员函数,使其成为虚函数 动态绑定:当使用基类的引用或指针调用一个虚函数时将发生动态绑定

注意:

可以将派生类的对象赋值给基类的指针或引用,反之不可 普通函数(非类成员函数)不能是虚函数 静态函数(static)不能是虚函数 构造函数不能是虚函数(因为在调用构造函数时,虚表指针并没有在对象的内存空间中,必须要构造函数调用完成后才会形成虚表指针) 内联函数不能是表现多态性时的虚函数,解释见:虚函数(virtual)可以是内联函数(inline)吗?

动态多态使用

class Shape // 形状类 { public: virtual double calcArea() { ... } virtual ~Shape(); }; class Circle : public Shape // 圆形类 { public: virtual double calcArea(); ... }; class Rect : public Shape // 矩形类 { public: virtual double calcArea(); ... }; int main() { Shape * shape1 = new Circle(4.0); Shape * shape2 = new Rect(5.0, 6.0); shape1->calcArea(); // 调用圆形类里面的方法 shape2->calcArea(); // 调用矩形类里面的方法 delete shape1; shape1 = nullptr; delete shape2; shape2 = nullptr; return 0; } 虚析构函数

虚析构函数是为了解决基类的指针指向派生类对象,并用基类的指针删除派生类对象。

虚析构函数使用

class Shape { public: Shape(); // 构造函数不能是虚函数 virtual double calcArea(); virtual ~Shape(); // 虚析构函数 }; class Circle : public Shape // 圆形类 { public: virtual double calcArea(); ... }; int main() { Shape * shape1 = new Circle(4.0); shape1->calcArea(); delete shape1; // 因为Shape有虚析构函数,所以delete释放内存时,先调用子类析构函数,再调用基类析构函数,防止内存泄漏。 shape1 = NULL; return 0; } 纯虚函数

纯虚函数是一种特殊的虚函数,在基类中不能对虚函数给出有意义的实现,而把它声明为纯虚函数,它的实现留给该基类的派生类去做。

virtual int A() = 0; 虚函数、纯虚函数 类里如果声明了虚函数,这个函数是实现的,哪怕是空实现,它的作用就是为了能让这个函数在它的子类里面可以被覆盖(override),这样的话,编译器就可以使用后期绑定来达到多态了。纯虚函数只是一个接口,是个函数的声明而已,它要留到子类里去实现。 虚函数在子类里面可以不重写;但纯虚函数必须在子类实现才可以实例化子类。 虚函数的类用于 “实作继承”,继承接口的同时也继承了父类的实现。纯虚函数关注的是接口的统一性,实现由子类完成。 带纯虚函数的类叫抽象类,这种类不能直接生成对象,而只有被继承,并重写其虚函数后,才能使用。抽象类被继承后,子类可以继续是抽象类,也可以是普通类。 虚基类是虚继承中的基类,具体见下文虚继承。

CSDN . C++ 中的虚函数、纯虚函数区别和联系

虚函数指针、虚函数表 虚函数指针:在含有虚函数类的对象中,指向虚函数表,在运行时确定。 虚函数表:在程序只读数据段(.rodata section,见:目标文件存储结构),存放虚函数指针,如果派生类实现了基类的某个虚函数,则在虚表中覆盖原本基类的那个虚函数指针,在编译时根据类的声明创建。

C++中的虚函数(表)实现机制以及用C语言对其进行的模拟实现

虚继承

虚继承用于解决多继承条件下的菱形继承问题(浪费存储空间、存在二义性)。

底层实现原理与编译器相关,一般通过虚基类指针和虚基类表实现,每个虚继承的子类都有一个虚基类指针(占用一个指针的存储空间,4字节)和虚基类表(不占用类对象的存储空间)(需要强调的是,虚基类依旧会在子类里面存在拷贝,只是仅仅最多存在一份而已,并不是不在子类里面了);当虚继承的子类被当做父类继承时,虚基类指针也会被继承。

实际上,vbptr 指的是虚基类表指针(virtual base table pointer),该指针指向了一个虚基类表(virtual table),虚表中记录了虚基类与本类的偏移地址;通过偏移地址,这样就找到了虚基类成员,而虚继承也不用像普通多继承那样维持着公共基类(虚基类)的两份同样的拷贝,节省了存储空间。

虚继承、虚函数 相同之处:都利用了虚指针(均占用类的存储空间)和虚表(均不占用类的存储空间) 不同之处: 虚继承 虚基类依旧存在继承类中,只占用存储空间 虚基类表存储的是虚基类相对直接继承类的偏移 虚函数 虚函数不占用存储空间 虚函数表存储的是虚函数地址 类模板、成员模板、虚函数 类模板中可以使用虚函数 一个类(无论是普通类还是类模板)的成员模板(本身是模板的成员函数)不能是虚函数 抽象类、接口类、聚合类 抽象类:含有纯虚函数的类 接口类:仅含有纯虚函数的抽象类 聚合类:用户可以直接访问其成员,并且具有特殊的初始化语法形式。满足如下特点: 所有成员都是 public 没有定义任何构造函数 没有类内初始化 没有基类,也没有 virtual 函数 内存分配和管理 malloc、calloc、realloc、alloca malloc:申请指定字节数的内存。申请到的内存中的初始值不确定。 calloc:为指定长度的对象,分配能容纳其指定个数的内存。申请到的内存的每一位(bit)都初始化为 0。 realloc:更改以前分配的内存长度(增加或减少)。当增加长度时,可能需将以前分配区的内容移到另一个足够大的区域,而新增区域内的初始值则不确定。 alloca:在栈上申请内存。程序在出栈的时候,会自动释放内存。但是需要注意的是,alloca 不具可移植性, 而且在没有传统堆栈的机器上很难实现。alloca 不宜使用在必须广泛移植的程序中。C99 中支持变长数组 (VLA),可以用来替代 alloca。 malloc、free

用于分配、释放内存

malloc、free 使用

申请内存,确认是否申请成功

char *str = (char*) malloc(100); assert(str != nullptr);

释放内存后指针置空

free(p); p = nullptr; new、delete new / new[]:完成两件事,先底层调用 malloc 分配了内存,然后调用构造函数(创建对象)。 delete/delete[]:也完成两件事,先调用析构函数(清理资源),然后底层调用 free 释放空间。 new 在申请内存时会自动计算所需字节数,而 malloc 则需我们自己输入申请内存空间的字节数。

new、delete 使用

申请内存,确认是否申请成功

int main() { T* t = new T(); // 先内存分配 ,再构造函数 delete t; // 先析构函数,再内存释放 return 0; } 定位 new

定位 new(placement new)允许我们向 new 传递额外的地址参数,从而在预先指定的内存区域创建对象。

new (place_address) type new (place_address) type (initializers) new (place_address) type [size] new (place_address) type [size] { braced initializer list } place_address 是个指针 initializers 提供一个(可能为空的)以逗号分隔的初始值列表 delete this 合法吗?

Is it legal (and moral) for a member function to say delete this?

合法,但:

必须保证 this 对象是通过 new(不是 new[]、不是 placement new、不是栈上、不是全局、不是其他对象成员)分配的 必须保证调用 delete this 的成员函数是最后一个调用 this 的成员函数 必须保证成员函数的 delete this 后面没有调用 this 了 必须保证 delete this 后没有人使用了 如何定义一个只能在堆上(栈上)生成对象的类?

如何定义一个只能在堆上(栈上)生成对象的类?

只能在堆上

方法:将析构函数设置为私有

原因:C++ 是静态绑定语言,编译器管理栈上对象的生命周期,编译器在为类对象分配栈空间时,会先检查类的析构函数的访问性。若析构函数不可访问,则不能在栈上创建对象。

只能在栈上

方法:将 new 和 delete 重载为私有

原因:在堆上生成对象,使用 new 关键词操作,其过程分为两阶段:第一阶段,使用 new 在堆上寻找可用内存,分配给对象;第二阶段,调用构造函数生成对象。将 new 操作设置为私有,那么第一阶段就无法完成,就不能够在堆上生成对象。

智能指针 C++ 标准库(STL)中

头文件:#include

C++ 98 std::auto_ptr ps (new std::string(str)); C++ 11 shared_ptr unique_ptr weak_ptr auto_ptr(被 C++11 弃用) Class shared_ptr 实现共享式拥有(shared ownership)概念。多个智能指针指向相同对象,该对象和其相关资源会在 “最后一个 reference 被销毁” 时被释放。为了在结构较复杂的情景中执行上述工作,标准库提供 weak_ptr、bad_weak_ptr 和 enable_shared_from_this 等辅助类。 Class unique_ptr 实现独占式拥有(exclusive ownership)或严格拥有(strict ownership)概念,保证同一时间内只有一个智能指针可以指向该对象。你可以移交拥有权。它对于避免内存泄漏(resource leak)——如 new 后忘记 delete ——特别有用。 shared_ptr

多个智能指针可以共享同一个对象,对象的最末一个拥有着有责任销毁对象,并清理与该对象相关的所有资源。

支持定制型删除器(custom deleter),可防范 Cross-DLL 问题(对象在动态链接库(DLL)中被 new 创建,却在另一个 DLL 内被 delete 销毁)、自动解除互斥锁 weak_ptr

weak_ptr 允许你共享但不拥有某对象,一旦最末一个拥有该对象的智能指针失去了所有权,任何 weak_ptr 都会自动成空(empty)。因此,在 default 和 copy 构造函数之外,weak_ptr 只提供 “接受一个 shared_ptr” 的构造函数。

可打破环状引用(cycles of references,两个其实已经没有被使用的对象彼此互指,使之看似还在 “被使用” 的状态)的问题 unique_ptr

unique_ptr 是 C++11 才开始提供的类型,是一种在异常时可以帮助避免资源泄漏的智能指针。采用独占式拥有,意味着可以确保一个对象和其相应的资源同一时间只被一个 pointer 拥有。一旦拥有着被销毁或编程 empty,或开始拥有另一个对象,先前拥有的那个对象就会被销毁,其任何相应资源亦会被释放。

unique_ptr 用于取代 auto_ptr auto_ptr

被 c++11 弃用,原因是缺乏语言特性如 “针对构造和赋值” 的 std::move 语义,以及其他瑕疵。

auto_ptr 与 unique_ptr 比较 auto_ptr 可以赋值拷贝,复制拷贝后所有权转移;unqiue_ptr 无拷贝赋值语义,但实现了move 语义; auto_ptr 对象不能管理数组(析构调用 delete),unique_ptr 可以管理数组(析构调用 delete[] ); 强制类型转换运算符

MSDN . 强制转换运算符

static_cast 用于非多态类型的转换 不执行运行时类型检查(转换安全性不如 dynamic_cast) 通常用于转换数值数据类型(如 float -> int) 可以在整个类层次结构中移动指针,子类转化为父类安全(向上转换),父类转化为子类不安全(因为子类可能有不在父类的字段或方法)

向上转换是一种隐式转换。

dynamic_cast 用于多态类型的转换 执行行运行时类型检查 只适用于指针或引用 对不明确的指针的转换将失败(返回 nullptr),但不引发异常 可以在整个类层次结构中移动指针,包括向上转换、向下转换 const_cast 用于删除 const、volatile 和 __unaligned 特性(如将 const int 类型转换为 int 类型 ) reinterpret_cast 用于位的简单重新解释 滥用 reinterpret_cast 运算符可能很容易带来风险。 除非所需转换本身是低级别的,否则应使用其他强制转换运算符之一。 允许将任何指针转换为任何其他指针类型(如 char* 到 int* 或 One_class* 到 Unrelated_class* 之类的转换,但其本身并不安全) 也允许将任何整数类型转换为任何指针类型以及反向转换。 reinterpret_cast 运算符不能丢掉 const、volatile 或 __unaligned 特性。 reinterpret_cast 的一个实际用途是在哈希函数中,即,通过让两个不同的值几乎不以相同的索引结尾的方式将值映射到索引。 bad_cast 由于强制转换为引用类型失败,dynamic_cast 运算符引发 bad_cast 异常。

bad_cast 使用

try { Circle& ref_circle = dynamic_cast(ref_shape); } catch (bad_cast b) { cout #include using namespace std; class Flyable // 能飞的 { public: virtual void takeoff() = 0; // 起飞 virtual void land() = 0; // 降落 }; class Bird : public Flyable // 鸟 { public: void foraging() {...} // 觅食 virtual void takeoff() {...} virtual void land() {...} virtual ~Bird(){} }; class Plane : public Flyable // 飞机 { public: void carry() {...} // 运输 virtual void takeoff() {...} virtual void land() {...} }; class type_info { public: const char* name() const; bool operator == (const type_info & rhs) const; bool operator != (const type_info & rhs) const; int before(const type_info & rhs) const; virtual ~type_info(); private: ... }; void doSomething(Flyable *obj) // 做些事情 { obj->takeoff(); cout land(); } int main(){ Bird *b = new Bird(); doSomething(b); delete b; b = nullptr; return 0; }

⭐️ Effective Effective C++ 视 C++ 为一个语言联邦(C、Object-Oriented C++、Template C++、STL) 宁可以编译器替换预处理器(尽量以 const、enum、inline 替换 #define) 尽可能使用 const 确定对象被使用前已先被初始化(构造时赋值(copy 构造函数)比 default 构造后赋值(copy assignment)效率高) 了解 C++ 默默编写并调用哪些函数(编译器暗自为 class 创建 default 构造函数、copy 构造函数、copy assignment 操作符、析构函数) 若不想使用编译器自动生成的函数,就应该明确拒绝(将不想使用的成员函数声明为 private,并且不予实现) 为多态基类声明 virtual 析构函数(如果 class 带有任何 virtual 函数,它就应该拥有一个 virtual 析构函数) 别让异常逃离析构函数(析构函数应该吞下不传播异常,或者结束程序,而不是吐出异常;如果要处理异常应该在非析构的普通函数处理) 绝不在构造和析构过程中调用 virtual 函数(因为这类调用从不下降至 derived class) 令 operator= 返回一个 reference to *this (用于连锁赋值) 在 operator= 中处理 “自我赋值” 赋值对象时应确保复制 “对象内的所有成员变量” 及 “所有 base class 成分”(调用基类复制构造函数) 以对象管理资源(资源在构造函数获得,在析构函数释放,建议使用智能指针,资源取得时机便是初始化时机(Resource Acquisition Is Initialization,RAII)) 在资源管理类中小心 copying 行为(普遍的 RAII class copying 行为是:抑制 copying、引用计数、深度拷贝、转移底部资源拥有权(类似 auto_ptr)) 在资源管理类中提供对原始资源(raw resources)的访问(对原始资源的访问可能经过显式转换或隐式转换,一般而言显示转换比较安全,隐式转换对客户比较方便) 成对使用 new 和 delete 时要采取相同形式(new 中使用 [] 则 delete [],new 中不使用 [] 则 delete) 以独立语句将 newed 对象存储于(置入)智能指针(如果不这样做,可能会因为编译器优化,导致难以察觉的资源泄漏) 让接口容易被正确使用,不易被误用(促进正常使用的办法:接口的一致性、内置类型的行为兼容;阻止误用的办法:建立新类型,限制类型上的操作,约束对象值、消除客户的资源管理责任) 设计 class 犹如设计 type,需要考虑对象创建、销毁、初始化、赋值、值传递、合法值、继承关系、转换、一般化等等。 宁以 pass-by-reference-to-const 替换 pass-by-value (前者通常更高效、避免切割问题(slicing problem),但不适用于内置类型、STL迭代器、函数对象) 必须返回对象时,别妄想返回其 reference(绝不返回 pointer 或 reference 指向一个 local stack 对象,或返回 reference 指向一个 heap-allocated 对象,或返回 pointer 或 reference 指向一个 local static 对象而有可能同时需要多个这样的对象。) 将成员变量声明为 private(为了封装、一致性、对其读写精确控制等) 宁以 non-member、non-friend 替换 member 函数(可增加封装性、包裹弹性(packaging flexibility)、机能扩充性) 若所有参数(包括被this指针所指的那个隐喻参数)皆须要类型转换,请为此采用 non-member 函数 考虑写一个不抛异常的 swap 函数 尽可能延后变量定义式的出现时间(可增加程序清晰度并改善程序效率) 尽量少做转型动作(旧式:(T)expression、T(expression);新式:const_cast(expression)、dynamic_cast(expression)、reinterpret_cast(expression)、static_cast(expression)、;尽量避免转型、注重效率避免 dynamic_casts、尽量设计成无需转型、可把转型封装成函数、宁可用新式转型) 避免使用 handles(包括 引用、指针、迭代器)指向对象内部(以增加封装性、使 const 成员函数的行为更像 const、降低 “虚吊号码牌”(dangling handles,如悬空指针等)的可能性) 为 “异常安全” 而努力是值得的(异常安全函数(Exception-safe functions)即使发生异常也不会泄露资源或允许任何数据结构败坏,分为三种可能的保证:基本型、强列型、不抛异常型) 透彻了解 inlining 的里里外外(inlining 在大多数 C++ 程序中是编译期的行为;inline 函数是否真正 inline,取决于编译器;大部分编译器拒绝太过复杂(如带有循环或递归)的函数 inlining,而所有对 virtual 函数的调用(除非是最平淡无奇的)也都会使 inlining 落空;inline 造成的代码膨胀可能带来效率损失;inline 函数无法随着程序库的升级而升级) 将文件间的编译依存关系降至最低(如果使用 object references 或 object pointers 可以完成任务,就不要使用 objects;如果能够,尽量以 class 声明式替换 class 定义式;为声明式和定义式提供不同的头文件) 确定你的 public 继承塑模出 is-a(是一种)关系(适用于 base classes 身上的每一件事情一定适用于 derived classes 身上,因为每一个 derived class 对象也都是一个 base class 对象) 避免遮掩继承而来的名字(可使用 using 声明式或转交函数(forwarding functions)来让被遮掩的名字再见天日) 区分接口继承和实现继承(在 public 继承之下,derived classes 总是继承 base class 的接口;pure virtual 函数只具体指定接口继承;非纯 impure virtual 函数具体指定接口继承及缺省实现继承;non-virtual 函数具体指定接口继承以及强制性实现继承) 考虑 virtual 函数以外的其他选择(如 Template Method 设计模式的 non-virtual interface(NVI)手法,将 virtual 函数替换为 “函数指针成员变量”,以 tr1::function 成员变量替换 virtual 函数,将继承体系内的 virtual 函数替换为另一个继承体系内的 virtual 函数) 绝不重新定义继承而来的 non-virtual 函数 绝不重新定义继承而来的缺省参数值,因为缺省参数值是静态绑定(statically bound),而 virtual 函数却是动态绑定(dynamically bound) 通过复合塑模 has-a(有一个)或 “根据某物实现出”(在应用域(application domain),复合意味 has-a(有一个);在实现域(implementation domain),复合意味着 is-implemented-in-terms-of(根据某物实现出)) 明智而审慎地使用 private 继承(private 继承意味着 is-implemented-in-terms-of(根据某物实现出),尽可能使用复合,当 derived class 需要访问 protected base class 的成员,或需要重新定义继承而来的时候 virtual 函数,或需要 empty base 最优化时,才使用 private 继承) 明智而审慎地使用多重继承(多继承比单一继承复杂,可能导致新的歧义性,以及对 virtual 继承的需要,但确有正当用途,如 “public 继承某个 interface class” 和 “private 继承某个协助实现的 class”;virtual 继承可解决多继承下菱形继承的二义性问题,但会增加大小、速度、初始化及赋值的复杂度等等成本) 了解隐式接口和编译期多态(class 和 templates 都支持接口(interfaces)和多态(polymorphism);class 的接口是以签名为中心的显式的(explicit),多态则是通过 virtual 函数发生于运行期;template 的接口是奠基于有效表达式的隐式的(implicit),多态则是通过 template 具现化和函数重载解析(function overloading resolution)发生于编译期) 了解 typename 的双重意义(声明 template 类型参数是,前缀关键字 class 和 typename 的意义完全相同;请使用关键字 typename 标识嵌套从属类型名称,但不得在基类列(base class lists)或成员初值列(member initialization list)内以它作为 base class 修饰符) 学习处理模板化基类内的名称(可在 derived class templates 内通过 this-> 指涉 base class templates 内的成员名称,或藉由一个明白写出的 “base class 资格修饰符” 完成) 将与参数无关的代码抽离 templates(因类型模板参数(non-type template parameters)而造成代码膨胀往往可以通过函数参数或 class 成员变量替换 template 参数来消除;因类型参数(type parameters)而造成的代码膨胀往往可以通过让带有完全相同二进制表述(binary representations)的实现类型(instantiation types)共享实现码) 运用成员函数模板接受所有兼容类型(请使用成员函数模板(member function templates)生成 “可接受所有兼容类型” 的函数;声明 member templates 用于 “泛化 copy 构造” 或 “泛化 assignment 操作” 时还需要声明正常的 copy 构造函数和 copy assignment 操作符) 需要类型转换时请为模板定义非成员函数(当我们编写一个 class template,而它所提供之 “与此 template 相关的” 函数支持 “所有参数之隐式类型转换” 时,请将那些函数定义为 “class template 内部的 friend 函数”) 请使用 traits classes 表现类型信息(traits classes 通过 templates 和 “templates 特化” 使得 “类型相关信息” 在编译期可用,通过重载技术(overloading)实现在编译期对类型执行 if...else 测试) 认识 template 元编程(模板元编程(TMP,template metaprogramming)可将工作由运行期移往编译期,因此得以实现早期错误侦测和更高的执行效率;TMP 可被用来生成 “给予政策选择组合”(based on combinations of policy choices)的客户定制代码,也可用来避免生成对某些特殊类型并不适合的代码) 了解 new-handler 的行为(set_new_handler 允许客户指定一个在内存分配无法获得满足时被调用的函数;nothrow new 是一个颇具局限的工具,因为它只适用于内存分配(operator new),后继的构造函数调用还是可能抛出异常) 了解 new 和 delete 的合理替换时机(为了检测运用错误、收集动态分配内存之使用统计信息、增加分配和归还速度、降低缺省内存管理器带来的空间额外开销、弥补缺省分配器中的非最佳齐位、将相关对象成簇集中、获得非传统的行为) 编写 new 和 delete 时需固守常规(operator new 应该内涵一个无穷循环,并在其中尝试分配内存,如果它无法满足内存需求,就应该调用 new-handler,它也应该有能力处理 0 bytes 申请,class 专属版本则还应该处理 “比正确大小更大的(错误)申请”;operator delete 应该在收到 null 指针时不做任何事,class 专属版本则还应该处理 “比正确大小更大的(错误)申请”) 写了 placement new 也要写 placement delete(当你写一个 placement operator new,请确定也写出了对应的 placement operator delete,否则可能会发生隐微而时断时续的内存泄漏;当你声明 placement new 和 placement delete,请确定不要无意识(非故意)地遮掩了它们地正常版本) 不要轻忽编译器的警告 让自己熟悉包括 TR1 在内的标准程序库(TR1,C++ Technical Report 1,C++11 标准的草稿文件) 让自己熟悉 Boost(准标准库) More Effective c++ 仔细区别 pointers 和 references(当你知道你需要指向某个东西,而且绝不会改变指向其他东西,或是当你实现一个操作符而其语法需求无法由 pointers 达成,你就应该选择 references;任何其他时候,请采用 pointers) 最好使用 C++ 转型操作符(static_cast、const_cast、dynamic_cast、reinterpret_cast) 绝不要以多态(polymorphically)方式处理数组(多态(polymorphism)和指针算术不能混用;数组对象几乎总是会涉及指针的算术运算,所以数组和多态不要混用) 非必要不提供 default constructor(避免对象中的字段被无意义地初始化) 对定制的 “类型转换函数” 保持警觉(单自变量 constructors 可通过简易法(explicit 关键字)或代理类(proxy classes)来避免编译器误用;隐式类型转换操作符可改为显式的 member function 来避免非预期行为) 区别 increment/decrement 操作符的前置(prefix)和后置(postfix)形式(前置式累加后取出,返回一个 reference;后置式取出后累加,返回一个 const 对象;处理用户定制类型时,应该尽可能使用前置式 increment;后置式的实现应以其前置式兄弟为基础) 千万不要重载 &&,|| 和 , 操作符(&& 与 || 的重载会用 “函数调用语义” 取代 “骤死式语义”;, 的重载导致不能保证左侧表达式一定比右侧表达式更早被评估) 了解各种不同意义的 new 和 delete(new operator、operator new、placement new、operator new[];delete operator、operator delete、destructor、operator delete[]) 利用 destructors 避免泄漏资源(在 destructors 释放资源可以避免异常时的资源泄漏) 在 constructors 内阻止资源泄漏(由于 C++ 只会析构已构造完成的对象,因此在构造函数可以使用 try...catch 或者 auto_ptr(以及与之相似的 classes) 处理异常时资源泄露问题) 禁止异常流出 destructors 之外(原因:一、避免 terminate 函数在 exception 传播过程的栈展开(stack-unwinding)机制种被调用;二、协助确保 destructors 完成其应该完成的所有事情) 了解 “抛出一个 exception” 与 “传递一个参数” 或 “调用一个虚函数” 之间的差异(第一,exception objects 总是会被复制(by pointer 除外),如果以 by value 方式捕捉甚至被复制两次,而传递给函数参数的对象则不一定得复制;第二,“被抛出成为 exceptions” 的对象,其被允许的类型转换动作比 “被传递到函数去” 的对象少;第三,catch 子句以其 “出现于源代码的顺序” 被编译器检验对比,其中第一个匹配成功者便执行,而调用一个虚函数,被选中执行的是那个 “与对象类型最佳吻合” 的函数) 以 by reference 方式捕获 exceptions(可避免对象删除问题、exception objects 的切割问题,可保留捕捉标准 exceptions 的能力,可约束 exception object 需要复制的次数) 明智运用 exception specifications(exception specifications 对 “函数希望抛出什么样的 exceptions” 提供了卓越的说明;也有一些缺点,包括编译器只对它们做局部性检验而很容易不经意地违反,与可能会妨碍更上层的 exception 处理函数处理未预期的 exceptions) 了解异常处理的成本(粗略估计,如果使用 try 语句块,代码大约整体膨胀 5%-10%,执行速度亦大约下降这个数;因此请将你对 try 语句块和 exception specifications 的使用限制于非用不可的地点,并且在真正异常的情况下才抛出 exceptions) 谨记 80-20 法则(软件的整体性能几乎总是由其构成要素(代码)的一小部分决定的,可使用程序分析器(program profiler)识别出消耗资源的代码) 考虑使用 lazy evaluation(缓式评估)(可应用于:Reference Counting(引用计数)来避免非必要的对象复制、区分 operator[] 的读和写动作来做不同的事情、Lazy Fetching(缓式取出)来避免非必要的数据库读取动作、Lazy Expression Evaluation(表达式缓评估)来避免非必要的数值计算动作) 分期摊还预期的计算成本(当你必须支持某些运算而其结构几乎总是被需要,或其结果常常被多次需要的时候,over-eager evaluation(超急评估)可以改善程序效率) Google C++ Style Guide 英文:Google C++ Style Guide 中文:C++ 风格指南 其他 Bjarne Stroustrup 的常见问题 Bjarne Stroustrup 的 C++ 风格和技巧常见问题

📦 STL STL 索引

STL 方法含义索引

STL 容器 容器 底层数据结构 时间复杂度 有无序 可不可重复 其他 array 数组 随机读改 O(1) 无序 可重复 支持随机访问 vector 数组 随机读改、尾部插入、尾部删除 O(1)头部插入、头部删除 O(n) 无序 可重复 支持随机访问 deque 双端队列 头尾插入、头尾删除 O(1) 无序 可重复 一个中央控制器 + 多个缓冲区,支持首尾快速增删,支持随机访问 forward_list 单向链表 插入、删除 O(1) 无序 可重复 不支持随机访问 list 双向链表 插入、删除 O(1) 无序 可重复 不支持随机访问 stack deque / list 顶部插入、顶部删除 O(1) 无序 可重复 deque 或 list 封闭头端开口,不用 vector 的原因应该是容量大小有限制,扩容耗时 queue deque / list 尾部插入、头部删除 O(1) 无序 可重复 deque 或 list 封闭头端开口,不用 vector 的原因应该是容量大小有限制,扩容耗时 priority_queue vector + max-heap 插入、删除 O(log2n) 有序 可重复 vector容器+heap处理规则 set 红黑树 插入、删除、查找 O(log2n) 有序 不可重复 multiset 红黑树 插入、删除、查找 O(log2n) 有序 可重复 map 红黑树 插入、删除、查找 O(log2n) 有序 不可重复 multimap 红黑树 插入、删除、查找 O(log2n) 有序 可重复 unordered_set 哈希表 插入、删除、查找 O(1) 最差 O(n) 无序 不可重复 unordered_multiset 哈希表 插入、删除、查找 O(1) 最差 O(n) 无序 可重复 unordered_map 哈希表 插入、删除、查找 O(1) 最差 O(n) 无序 不可重复 unordered_multimap 哈希表 插入、删除、查找 O(1) 最差 O(n) 无序 可重复 STL 算法 算法 底层算法 时间复杂度 可不可重复 find 顺序查找 O(n) 可重复 sort 内省排序 O(n*log2n) 可重复

〽️ 数据结构 顺序结构 顺序栈(Sequence Stack)

SqStack.cpp

顺序栈数据结构和图片

typedef struct { ElemType *elem; int top; int size; int increment; } SqStack;

队列(Sequence Queue)

队列数据结构

typedef struct { ElemType * elem; int front; int rear; int maxSize; }SqQueue; 非循环队列

非循环队列图片

SqQueue.rear++

循环队列

循环队列图片

SqQueue.rear = (SqQueue.rear + 1) % SqQueue.maxSize

顺序表(Sequence List)

SqList.cpp

顺序表数据结构和图片

typedef struct { ElemType *elem; int length; int size; int increment; } SqList;

链式结构

LinkList.cpp

LinkList_with_head.cpp

链式数据结构

typedef struct LNode { ElemType data; struct LNode *next; } LNode, *LinkList; 链队列(Link Queue)

链队列图片

线性表的链式表示 单链表(Link List)

单链表图片

双向链表(Du-Link-List)

双向链表图片

循环链表(Cir-Link-List)

循环链表图片

哈希表

HashTable.cpp

概念

哈希函数:H(key): K -> D , key ∈ K

构造方法 直接定址法 除留余数法 数字分析法 折叠法 平方取中法 冲突处理方法 链地址法:key 相同的用单链表链接 开放定址法 线性探测法:key 相同 -> 放到 key 的下一个位置,Hi = (H(key) + i) % m 二次探测法:key 相同 -> 放到 Di = 1^2, -1^2, ..., ±(k)^2,(k= 1) 深度为 k 的二叉树最多 2k - 1 个结点 (k >= 1) 度为 0 的结点数为 n0,度为 2 的结点数为 n2,则 n0 = n2 + 1 有 n 个结点的完全二叉树深度 k = ⌊ log2(n) ⌋ + 1 对于含 n 个结点的完全二叉树中编号为 i (1 n,则 i 结点没有右孩子,否则孩子编号为 2i + 1 存储结构

二叉树数据结构

typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; 顺序存储

二叉树顺序存储图片

链式存储

二叉树链式存储图片

遍历方式 先序遍历 中序遍历 后续遍历 层次遍历 分类 满二叉树 完全二叉树(堆) 大顶堆:根 >= 左 && 根 >= 右 小顶堆:根 利用冗余数据实施数据库恢复。 建立冗余数据常用技术:数据转储(动态海量转储、动态增量转储、静态海量转储、静态增量转储)、登记日志文件。 并发控制 事务是并发控制的基本单位。 并发操作带来的数据不一致性包括:丢失修改、不可重复读、读 “脏” 数据。 并发控制主要技术:封锁、时间戳、乐观控制法、多版本并发控制等。 基本封锁类型:排他锁(X 锁 / 写锁)、共享锁(S 锁 / 读锁)。 活锁死锁: 活锁:事务永远处于等待状态,可通过先来先服务的策略避免。 死锁:事务永远不能结束 预防:一次封锁法、顺序封锁法; 诊断:超时法、等待图法; 解除:撤销处理死锁代价最小的事务,并释放此事务的所有的锁,使其他事务得以继续运行下去。 可串行化调度:多个事务的并发执行是正确的,当且仅当其结果与按某一次序串行地执行这些事务时的结果相同。可串行性时并发事务正确调度的准则。

📏 设计模式

各大设计模式例子参考:CSDN专栏 . C++ 设计模式 系列博文

设计模式工程目录

单例模式

单例模式例子

抽象工厂模式

抽象工厂模式例子

适配器模式

适配器模式例子

桥接模式

桥接模式例子

观察者模式

观察者模式例子

设计模式的六大原则 单一职责原则(SRP,Single Responsibility Principle) 里氏替换原则(LSP,Liskov Substitution Principle) 依赖倒置原则(DIP,Dependence Inversion Principle) 接口隔离原则(ISP,Interface Segregation Principle) 迪米特法则(LoD,Law of Demeter) 开放封闭原则(OCP,Open Close Principle)

⚙️ 链接装载库

本节部分知识点来自《程序员的自我修养——链接装载库》

内存、栈、堆

一般应用程序内存空间有如下区域:

栈:由操作系统自动分配释放,存放函数的参数值、局部变量等的值,用于维护函数调用的上下文 堆:一般由程序员分配释放,若程序员不释放,程序结束时可能由操作系统回收,用来容纳应用程序动态分配的内存区域 可执行文件映像:存储着可执行文件在内存中的映像,由装载器装载是将可执行文件的内存读取或映射到这里 保留区:保留区并不是一个单一的内存区域,而是对内存中受到保护而禁止访问的内存区域的总称,如通常 C 语言讲无效指针赋值为 0(NULL),因此 0 地址正常情况下不可能有效的访问数据 栈

栈保存了一个函数调用所需要的维护信息,常被称为堆栈帧(Stack Frame)或活动记录(Activate Record),一般包含以下几方面:

函数的返回地址和参数 临时变量:包括函数的非静态局部变量以及编译器自动生成的其他临时变量 保存上下文:包括函数调用前后需要保持不变的寄存器 堆

堆分配算法:

空闲链表(Free List) 位图(Bitmap) 对象池 “段错误(segment fault)” 或 “非法操作,该内存地址不能 read/write”

典型的非法指针解引用造成的错误。当指针指向一个不允许读写的内存地址,而程序却试图利用指针来读或写该地址时,会出现这个错误。

普遍原因:

将指针初始化为 NULL,之后没有给它一个合理的值就开始使用指针 没用初始化栈中的指针,指针的值一般会是随机数,之后就直接开始使用指针 编译链接 各平台文件格式 平台 可执行文件 目标文件 动态库/共享对象 静态库 Windows exe obj dll lib Unix/Linux ELF、out o so a Mac Mach-O o dylib、tbd、framework a、framework 编译链接过程 预编译(预编译器处理如 #include、#define 等预编译指令,生成 .i 或 .ii 文件) 编译(编译器进行词法分析、语法分析、语义分析、中间代码生成、目标代码生成、优化,生成 .s 文件) 汇编(汇编器把汇编码翻译成机器码,生成 .o 文件) 链接(连接器进行地址和空间分配、符号决议、重定位,生成 .out 文件)

现在版本 GCC 把预编译和编译合成一步,预编译编译程序 cc1、汇编器 as、连接器 ld

MSVC 编译环境,编译器 cl、连接器 link、可执行文件查看器 dumpbin

目标文件

编译器编译源代码后生成的文件叫做目标文件。目标文件从结构上讲,它是已经编译后的可执行文件格式,只是还没有经过链接的过程,其中可能有些符号或有些地址还没有被调整。

可执行文件(Windows 的 .exe 和 Linux 的 ELF)、动态链接库(Windows 的 .dll 和 Linux 的 .so)、静态链接库(Windows 的 .lib 和 Linux 的 .a)都是按照可执行文件格式存储(Windows 按照 PE-COFF,Linux 按照 ELF)

目标文件格式 Windows 的 PE(Portable Executable),或称为 PE-COFF,.obj 格式 Linux 的 ELF(Executable Linkable Format),.o 格式 Intel/Microsoft 的 OMF(Object Module Format) Unix 的 a.out 格式 MS-DOS 的 .COM 格式

PE 和 ELF 都是 COFF(Common File Format)的变种

目标文件存储结构 段 功能 File Header 文件头,描述整个文件的文件属性(包括文件是否可执行、是静态链接或动态连接及入口地址、目标硬件、目标操作系统等) .text section 代码段,执行语句编译成的机器代码 .data section 数据段,已初始化的全局变量和局部静态变量 .bss section BSS 段(Block Started by Symbol),未初始化的全局变量和局部静态变量(因为默认值为 0,所以只是在此预留位置,不占空间) .rodata section 只读数据段,存放只读数据,一般是程序里面的只读变量(如 const 修饰的变量)和字符串常量 .comment section 注释信息段,存放编译器版本信息 .note.GNU-stack section 堆栈提示段

其他段略

链接的接口————符号

在链接中,目标文件之间相互拼合实际上是目标文件之间对地址的引用,即对函数和变量的地址的引用。我们将函数和变量统称为符号(Symbol),函数名或变量名就是符号名(Symbol Name)。

如下符号表(Symbol Table):

Symbol(符号名) Symbol Value (地址) main 0x100 Add 0x123 ... ... Linux 的共享库(Shared Library)

Linux 下的共享库就是普通的 ELF 共享对象。

共享库版本更新应该保证二进制接口 ABI(Application Binary Interface)的兼容

命名

libname.so.x.y.z

x:主版本号,不同主版本号的库之间不兼容,需要重新编译 y:次版本号,高版本号向后兼容低版本号 z:发布版本号,不对接口进行更改,完全兼容 路径

大部分包括 Linux 在内的开源系统遵循 FHS(File Hierarchy Standard)的标准,这标准规定了系统文件如何存放,包括各个目录结构、组织和作用。

/lib:存放系统最关键和最基础的共享库,如动态链接器、C 语言运行库、数学库等 /usr/lib:存放非系统运行时所需要的关键性的库,主要是开发库 /usr/local/lib:存放跟操作系统本身并不十分相关的库,主要是一些第三方应用程序的库

动态链接器会在 /lib、/usr/lib 和由 /etc/ld.so.conf 配置文件指定的,目录中查找共享库

环境变量 LD_LIBRARY_PATH:临时改变某个应用程序的共享库查找路径,而不会影响其他应用程序 LD_PRELOAD:指定预先装载的一些共享库甚至是目标文件 LD_DEBUG:打开动态链接器的调试功能 so 共享库的编写

使用 CLion 编写共享库

创建一个名为 MySharedLib 的共享库

CMakeLists.txt

cmake_minimum_required(VERSION 3.10) project(MySharedLib) set(CMAKE_CXX_STANDARD 11) add_library(MySharedLib SHARED library.cpp library.h)

library.h

#ifndef MYSHAREDLIB_LIBRARY_H #define MYSHAREDLIB_LIBRARY_H // 打印 Hello World! void hello(); // 使用可变模版参数求和 template T sum(T t) { return t; } template T sum(T first, Types ... rest) { return first + sum(rest...); } #endif

library.cpp

#include #include "library.h" void hello() { std::cout // MyLibFile1.cpp // 包含标准Windows和C运行时头文件 #include // DLL源码文件导出的函数和变量 #define MYLIBAPI extern "C" __declspec(dllexport) // 包含导出的数据结构、符号、函数、变量 #include "MyLib.h" // 将此DLL源代码文件的代码放在此处 int g_nResult; int Add(int nLeft, int nRight) { g_nResult = nLeft + nRight; return g_nResult; } DLL 库的使用(运行时动态链接 DLL)

DLL 库的使用(运行时动态链接 DLL)

// A simple program that uses LoadLibrary and // GetProcAddress to access myPuts from Myputs.dll. #include #include typedef int (__cdecl *MYPROC)(LPWSTR); int main( void ) { HINSTANCE hinstLib; MYPROC ProcAdd; BOOL fFreeResult, fRunTimeLinkSuccess = FALSE; // Get a handle to the DLL module. hinstLib = LoadLibrary(TEXT("MyPuts.dll")); // If the handle is valid, try to get the function address. if (hinstLib != NULL) { ProcAdd = (MYPROC) GetProcAddress(hinstLib, "myPuts"); // If the function address is valid, call the function. if (NULL != ProcAdd) { fRunTimeLinkSuccess = TRUE; (ProcAdd) (L"Message sent to the DLL function\n"); } // Free the DLL module. fFreeResult = FreeLibrary(hinstLib); } // If unable to call the DLL function, use an alternative. if (! fRunTimeLinkSuccess) printf("Message printed from executable\n"); return 0; } 运行库(Runtime Library) 典型程序运行步骤 操作系统创建进程,把控制权交给程序的入口(往往是运行库中的某个入口函数) 入口函数对运行库和程序运行环境进行初始化(包括堆、I/O、线程、全局变量构造等等)。 入口函数初始化后,调用 main 函数,正式开始执行程序主体部分。 main 函数执行完毕后,返回到入口函数进行清理工作(包括全局变量析构、堆销毁、关闭I/O等),然后进行系统调用结束进程。

一个程序的 I/O 指代程序与外界的交互,包括文件、管程、网络、命令行、信号等。更广义地讲,I/O 指代操作系统理解为 “文件” 的事物。

glibc 入口

_start -> __libc_start_main -> exit -> _exit

其中 main(argc, argv, __environ) 函数在 __libc_start_main 里执行。

MSVC CRT 入口

int mainCRTStartup(void)

执行如下操作:

初始化和 OS 版本有关的全局变量。 初始化堆。 初始化 I/O。 获取命令行参数和环境变量。 初始化 C 库的一些数据。 调用 main 并记录返回值。 检查错误并将 main 的返回值返回。 C 语言运行库(CRT)

大致包含如下功能:

启动与退出:包括入口函数及入口函数所依赖的其他函数等。 标准函数:有 C 语言标准规定的C语言标准库所拥有的函数实现。 I/O:I/O 功能的封装和实现。 堆:堆的封装和实现。 语言实现:语言中一些特殊功能的实现。 调试:实现调试功能的代码。 C语言标准库(ANSI C)

包含:

标准输入输出(stdio.h) 文件操作(stdio.h) 字符操作(ctype.h) 字符串操作(string.h) 数学函数(math.h) 资源管理(stdlib.h) 格式转换(stdlib.h) 时间/日期(time.h) 断言(assert.h) 各种类型上的常数(limits.h & float.h) 变长参数(stdarg.h) 非局部跳转(setjmp.h)

📚 书籍

huihut/CS-Books:📚 Computer Science Books 计算机技术类书籍 PDF

语言 《C++ Primer》 《Effective C++》 《More Effective C++》 《深度探索 C++ 对象模型》 《深入理解 C++11》 《STL 源码剖析》 算法 《剑指 Offer》 《编程珠玑》 《程序员面试宝典》 系统 《深入理解计算机系统》 《Windows 核心编程》 《Unix 环境高级编程》 网络 《Unix 网络编程》 《TCP/IP 详解》 其他 《程序员的自我修养》

🔱 C/C++ 发展方向

C/C++ 发展方向甚广,包括不限于以下方向, 以下列举一些大厂校招岗位要求。

后台/服务器

【后台开发】

编程基本功扎实,掌握 C/C++/JAVA 等开发语言、常用算法和数据结构; 熟悉 TCP/UDP 网络协议及相关编程、进程间通讯编程; 了解 Python、Shell、Perl 等脚本语言; 了解 MYSQL 及 SQL 语言、编程,了解 NoSQL, key-value 存储原理; 全面、扎实的软件知识结构,掌握操作系统、软件工程、设计模式、数据结构、数据库系统、网络安全等专业知识; 了解分布式系统设计与开发、负载均衡技术,系统容灾设计,高可用系统等知识。 桌面客户端

【PC 客户端开发】

计算机软件相关专业本科或以上学历,热爱编程,基础扎实,理解算法和数据结构相关知识; 熟悉 windows 操作系统的内存管理、文件系统、进程线程调度; 熟悉 MFC/windows 界面实现机制,熟练使用 VC,精通 C/C++,熟练使用 STL,以及 Windows 下网络编程经验; 熟练掌握 Windows 客户端开发、调试,有 Windows 应用软件开发经验优先; 对于创新及解决具有挑战性的问题充满激情,具有良好的算法基础及系统分析能力。 图形学/游戏/VR/AR

【游戏客户端开发】

计算机科学/工程相关专业本科或以上学历,热爱编程,基础扎实,理解算法、数据结构、软件设计相关知识; 至少掌握一种游戏开发常用的编程语言,具 C++/C# 编程经验优先; 具游戏引擎(如 Unity、Unreal)使用经验者优先; 了解某方面的游戏客户端技术(如图形、音频、动画、物理、人工智能、网络同步)者优先考虑; 对于创新及解决具有挑战性的问题充满激情,有较强的学习能力、分析及解决问题能力,具备良好的团队合作意识; 具阅读英文技术文档能力; 热爱游戏。 测试开发

【测试开发】

计算机或相关专业本科及以上学历; 一至两年的 C/C++/Python 或其他计算机语言的编程经验; 具备撰写测试计划、测试用例、以及实现性能和安全等测试的能力; 具备实现自动化系统的能力; 具备定位调查产品缺陷能力、以及代码级别调试缺陷的能力; 工作主动积极,有责任心,具有良好的团队合作精神。 网络安全/逆向

【安全技术】

热爱互联网,对操作系统和网络安全有狂热的追求,专业不限; 熟悉漏洞挖掘、网络安全攻防技术,了解常见黑客攻击手法; 掌握基本开发能力,熟练使用 C/C++ 语言; 对数据库、操作系统、网络原理有较好掌握; 具有软件逆向,网络安全攻防或安全系统开发经验者优先。 嵌入式/物联网

【嵌入式应用开发】

有良好的编程基础,熟练掌握 C/C++ 语言; 掌握操作系统、数据结构等软件开发必备知识; 具备较强的沟通理解能力及良好的团队合作意识; 有 Linux/Android 系统平台的开发经验者优先。 音视频/流媒体/SDK

【音视频编解码】

硕士及以上学历,计算机、信号处理、数学、信息类及相关专业和方向; 视频编解码基础扎实,熟常用的 HEVC 或 H264,有较好的数字信号处理基础; 掌握 C/C++,代码能力强, 熟悉一种汇编语言尤佳; 较强的英文文献阅读能力; 学习能力强,具有团队协作精神,有较强的抗压能力。 计算机视觉/机器学习

【计算机视觉研究】

计算机、应用数学、模式识别、人工智能、自控、统计学、运筹学、生物信息、物理学/量子计算、神经科学、社会学/心理学等专业,图像处理、模式识别、机器学习相关研究方向,本科及以上,博士优先; 熟练掌握计算机视觉和图像处理相关的基本算法及应用; 较强的算法实现能力,熟练掌握 C/C++ 编程,熟悉 Shell/Python/Matlab 至少一种编程语言; 在计算机视觉、模式识别等学术会议或者期刊上发表论文、相关国际比赛获奖、及有相关专利者优先。

💯 复习刷题网站 cplusplus cppreference runoob leetcode | leetcode-cn lintcode nowcoder

📝 面试题目经验 牛客网 . 2020秋招面经大汇总!(岗位划分) 牛客网 . 【备战秋招】2020届秋招备战攻略 牛客网 . 2019校招面经大汇总!【每日更新中】 牛客网 . 2019校招技术类岗位面经汇总【技术类】 牛客网 . 2018校招笔试真题汇总 牛客网 . 2017秋季校园招聘笔经面经专题汇总 牛客网 . 史上最全2017春招面经大合集!! 牛客网 . 面试题干货在此 知乎 . 互联网求职路上,你见过哪些写得很好、很用心的面经?最好能分享自己的面经、心路历程。 知乎 . 互联网公司最常见的面试算法题有哪些? CSDN . 全面整理的C++面试题 CSDN . 百度研发类面试题(C++方向) CSDN . c++常见面试题30道 CSDN . 腾讯2016实习生面试经验(已经拿到offer) cnblogs . C++面试集锦( 面试被问到的问题 ) cnblogs . C/C++ 笔试、面试题目大汇总 cnblogs . 常见C++面试题及基本知识点总结(一) segmentfault . C++常见面试问题总结

📆 招聘时间岗位 牛客网 . 名企校招日程

👍 内推 Github . CyC2018/Job-Recommend:🔎 互联网内推信息(社招、校招、实习) Github . amusi/AI-Job-Recommend:国内公司人工智能方向(含机器学习、深度学习、计算机视觉和自然语言处理)岗位的招聘信息(含全职、实习和校招)

👬 贡献者

📜 License

本仓库遵循 CC BY-NC-SA 4.0(署名 - 非商业性使用 - 相同方式共享) 协议,转载请注明出处,不得用于商业目的。

CC BY-NC-SA 4.0



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有