太极拳技能学习早期大脑功能的动态变化:基于运动表象的fMRI研究 您所在的位置:网站首页 视觉表象在大脑中的形成过程 太极拳技能学习早期大脑功能的动态变化:基于运动表象的fMRI研究

太极拳技能学习早期大脑功能的动态变化:基于运动表象的fMRI研究

2024-07-13 07:35| 来源: 网络整理| 查看: 265

Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012).

Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players

The European Journal of Neuroscience, 35(10), 1646-1654.

DOI:10.1111/ejn.2012.35.issue-10      URL     [本文引用: 1]

Bachrach, A., Jola, C., & Pallier, C. (2016).

Neuronal bases of structural coherence in contemporary dance observation

NeuroImage, 124, 464-472.

DOI:S1053-8119(15)00793-4      PMID:26348557      [本文引用: 1]

The neuronal processes underlying dance observation have been the focus of an increasing number of brain imaging studies over the past decade. However, the existing literature mainly dealt with effects of motor and visual expertise, whereas the neural and cognitive mechanisms that underlie the interpretation of dance choreographies remained unexplored. Hence, much attention has been given to the action observation network (AON) whereas the role of other potentially relevant neuro-cognitive mechanisms such as mentalizing (theory of mind) or language (narrative comprehension) in dance understanding is yet to be elucidated. We report the results of an fMRI study where the structural coherence of short contemporary dance choreographies was manipulated parametrically using the same taped movement material. Our participants were all trained dancers. The whole-brain analysis argues that the interpretation of structurally coherent dance phrases involves a subpart (superior parietal) of the AON as well as mentalizing regions in the dorsomedial prefrontal cortex. An ROI analysis based on a similar study using linguistic materials (Pallier et al., 2011) suggests that structural processing in language and dance might share certain neural mechanisms.Copyright © 2015 Elsevier Inc. All rights reserved.

Bai, X., Zhang, Q., Zhang, P., Zhou, S., Liu, Y., Song, X., & Peng, G. (2016).

Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study

Acta Psychologica Sinica, 48(5), 495-508.

DOI:10.3724/SP.J.1041.2016.00495      [本文引用: 1]

It is widely believed that activity in the primary motor cortex relates only to motor execution. However, the extent to which similar activity occurs when imagining motor movements remains to be determined and, while some researchers report activity in the primary motor cortex during both motor execution and motor imagery tasks (e.g.Solodkin et al., 2004; Sharma et al., 2008), others report no effects of motor imagery (e.g., Binkofski et al., 2000; Hanakawa et al., 2003; Hétu et al., 2013). It is still unknown whether brain activation patterns of motor execution and motor imagery are similar, and whether both tasks activate the primary motor cortex. In addition, it is also unclear about the effect of imagination intensity on the primary motor cortex (this effect has been well established in motor execution tasks). Accordingly, the present research investigated the relationship between the intensity of real and imagined exercise on cortical activity using functional near-infrared spectroscopy (fNIRS), especially in the primary motor cortex. A preliminary assessment used 10 participants (5 male, 5 female), who did not take part in the main experiment, to establish an appropriate level of exercise intensity. For the main experiment, 30 participants (15 male, 15 female) with high imagination ability were selected using the Motor Imagery Questionnaire (Revised). These participants performed a motor execution task in which they actually lifted dumbbells under two levels of exercise intensity (males, 4 pounds and 8 pounds; females, 2 pounds and 4 pounds) and an imagery version of this task in which they imagined lifting dumbbells of these weights. The fNIRS was used to measure cortical changes in oxygen level during the performance of the two tasks. Finally, on completion of the imagery task, the “motor imagery self-assessment questionnaire” was administered to assess the quality of the participants’ imagination. All participants reported that they could imagine dumbbell movement under different levels of exercise intensity. The fNIRS showed that although both motor imagery and motor execution produced increases in cortical oxygen levels, this was greater, and lateralized to the left hemisphere, during motor execution. In addition, effects of exercise intensity were observed during motor execution but not during motor imagery, such that oxygen levels were higher with increased exercise intensity. The indication from the present findings is that both motor execution and motor imagery activate the primary motor cortex. This challenges the conventional view that activity in the primary motor cortex relates only to motor execution and shows that this activity is also connected with motor imagery, plan, and control. The present findings therefore provide an important theoretical basis for the use of motor imagery therapy in the field of neural prosthetics. However, the present findings also reveal important differences in the effects of motor execution and motor imagery, and in particular that effects of exercise intensity on cortical activation may be observed only during motor execution and not motor imagery. However, further research will be required to more fully understand the nature of these differences in cortical activation.

[ 白学军, 张琪涵, 章鹏, 周菘, 刘颖, 宋星, 彭国慧. (2016).

基于fNIRS的运动执行与运动想象脑激活模式比较

心理学报, 48(5), 495-508.]

[本文引用: 1]

Bishop, D. T., Wright, M. J., Jackson, R. C., & Abernethy, B. (2013).

Neural bases for anticipation skill in soccer: An fMRI study

Journal of Sport & Exercise Psychology, 35(1), 98-109.

[本文引用: 1]

Chen, Q., & Liu, R. D. (Eds). (2019). Contemporary psychology of education (third edition). Beijing: Beijing Normal University Press.

[本文引用: 2]

[ 陈琦, 刘儒德. (主编). (2019). 当代教育心理学(第三版). 北京: 北京师范大学出版社.]

[本文引用: 2]

Chiacchiero, M., Cagliostro, P., Degenaro, J., Giannina, C., & Rabinovich, Y. (2015).

Motor imagery improves balance in older adults

Topics in Geriatric Rehabilitation, 31(2), 159-163.

DOI:10.1097/TGR.0000000000000063      URL     [本文引用: 1]

Collet, C., Guillot, A., Lebon, F., MacIntyre, T., & Moran, A. (2011).

Measuring motor imagery using psychometric, behavioral, and psychophysiological tools

Exercise and Sport Sciences Reviews, 39(2), 85-92.

DOI:10.1097/JES.0b013e31820ac5e0      PMID:21206282      [本文引用: 2]

This review examines the measurement of motor imagery (MI) processes. First, self-report measures of MI are evaluated. Next, mental chronometry measures are considered. Then, we explain how physiological indices of the autonomic nervous system can measure MI. Finally, we show how these indices may be combined to produce a measure of MI quality called the Motor Imagery Index.

Cui, L., Yin, H., Lyu, S., Shen, Q., Wang, Y., Li, X.,... Zhu, L. (2019).

Tai Chi Chuan vs general aerobic exercise in brain plasticity: A multimodal MRI study

Scientific Reports, 9(1), 17264-17267.

DOI:10.1038/s41598-019-53731-z      PMID:31754170      [本文引用: 1]

This study contrasted the impact of Tai Chi Chuan and general aerobic exercise on brain plasticity in terms of an increased grey matter volume and functional connectivity during structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI), explored the advantages of Tai Chi Chuan in improving brain structure and function. Thirty-six college students were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking) and control groups. Individuals were assessed with a sMRI and rs-fMRI scan before and after an 8-week training period. The VBM toolbox was used to conduct grey matter volume analyses. The CONN toolbox was used to conduct several seed-to-voxel functional connectivity analyses. We can conclude that compared with general aerobic exercise, eight weeks of Tai Chi Chuan exercise has a stronger effect on brain plasticity, which is embodied in the increase of grey matter volume in left middle occipital gyrus, left superior temporal gyrus and right middle temporal gyrus and the enhancement of functional connectivity between the left middle frontal gyrus and left superior parietal lobule. These findings demonstrate the potential and advantages of Tai Chi Chuan exercises in eliciting brain plasticity.

Di, X., Zhu, S., Jin, H., Wang, P., Ye, Z., Zhou, k.,... Rao, H. (2012).

Altered resting brain function and structure in professional badminton players

Brain Connectivity, 2(4), 225-233.

DOI:10.1089/brain.2011.0050      PMID:22840241      [本文引用: 1]

Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009).

Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses

Behavior Research Methods, 41(4), 1149-1160.

DOI:10.3758/BRM.41.4.1149      PMID:19897823      [本文引用: 1]

G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.

Feltz, D. L., & Landers, D. M. (1983).

The effects of mental practice on motor skill learning and performance: A meta-analysis

Journal of Sport Psychology, 5(1), 25-57.

DOI:10.1123/jsp.5.1.25      URL     [本文引用: 1]

A longstanding research question in the sport psychology literature has been whether a given amount of mental practice prior to performing a motor skill will enhance one's subsequent performance. The research literature, however, has not provided any clear-cut answers to this question and this has prompted the present, more comprehensive review of existing research using the meta-analytic strategy proposed by Glass (1977). From the 60 studies yielding 146 effect sizes the overall average effect size was.48, which suggests, as did Richardson (1967a), that mentally practicing a motor skill influences performance somewhat better than no practice at all. Effect sizes were also compared on a number of variables thought to moderate the effects of mental practice. Results from these comparisons indicated that studies employing cognitive tasks had larger average effect sizes than motor or strength tasks and that published studies had larger average effect sizes than unpublished studies. These findings are discussed in relation to several existing explanations for mental practice and four theoretical propositions are advanced.

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005).

Parietal lobe: From action organization to intention understanding

Science, 308(5722), 662-667.

DOI:10.1126/science.1106138      PMID:15860620      [本文引用: 1]

Inferior parietal lobule (IPL) neurons were studied when monkeys performed motor acts embedded in different actions and when they observed similar acts done by an experimenter. Most motor IPL neurons coding a specific act (e.g., grasping) showed markedly different activations when this act was part of different actions (e.g., for eating or for placing). Many motor IPL neurons also discharged during the observation of acts done by others. Most responded differentially when the same observed act was embedded in a specific action. These neurons fired during the observation of an act, before the beginning of the subsequent acts specifying the action. Thus, these neurons not only code the observed motor act but also allow the observer to understand the agent's intentions.

Grèzes, J., Frith, C., & Passingham, R. E. (2004).

Brain mechanisms for inferring deceit in the actions of others

The Journal of Neuroscience, 24(24), 5500-5505.

DOI:10.1523/JNEUROSCI.0219-04.2004      URL     [本文引用: 1]

During social interactions, it is important to judge accurately whether a person is honest or deceitful. We often use nonverbal cues to infer whether others are trying to deceive us. Using functional magnetic resonance imaging, we studied subjects watching videos of actors lifting a box and judged whether or not the actors were trying to deceive them concerning the real weight of the box. When the subjects judged the actions as reflecting deceptive intention, there was activation of the amygdala and rostral anterior cingulate cortex. These areas were not activated when subjects made judgements about the beliefs rather than the intentions of others. We suggest that these activations reflect the observers' judgements of social intentions toward themselves and might reflect an emotional response to being deceived.

Guillot, A., Collet, C., Nguyen, V. A., Malouin, F., Richards, C., & Doyon, J. (2008).

Functional neuroanatomical networks associated with expertise in motor imagery

NeuroImage, 41(4), 1471-1483.

DOI:10.1016/j.neuroimage.2008.03.042      PMID:18479943      [本文引用: 1]

Although numerous behavioural studies provide evidence that there exist wide differences within individual motor imagery (MI) abilities, little is known with regards to the functional neuroanatomical networks that dissociate someone with good versus poor MI capacities. For the first time, we thus compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 13 skilled and 15 unskilled imagers during both physical execution and MI of a sequence of finger movements. Differences in MI abilities were assessed using well-established questionnaire and chronometric measures, as well as a new index based upon the subject's peripheral responses from the autonomic nervous system. As expected, both good and poor imagers activated the inferior and superior parietal lobules, as well as motor-related regions including the lateral and medial premotor cortex, the cerebellum and putamen. Inter-group comparisons revealed that good imagers activated more the parietal and ventrolateral premotor regions, which are known to play a critical role in the generation of mental images. By contrast, poor imagers recruited the cerebellum, orbito-frontal and posterior cingulate cortices. Consistent with findings from the motor sequence learning literature and Doyon and Ungerleider's model of motor learning [Doyon, J., Ungerleider, L.G., 2002. Functional anatomy of motor skill learning. In: Squire, L.R., Schacter, D.L. (Eds.), Neuropsychology of memory, Guilford Press, pp. 225-238], our results demonstrate that compared to skilled imagers, poor imagers not only need to recruit the cortico-striatal system, but to compensate with the cortico-cerebellar system during MI of sequential movements.

Guillot, A., Hoyek, N., Louis, M., & Collet, C. (2012).

Understanding the timing of motor imagery: Recent findings and future directions

International Review of Sport and Exercise Psychology, 5(1), 3-22.

DOI:10.1080/1750984X.2011.623787      URL     [本文引用: 2]

Guo, Z., Li, A., & Yu, L. (2017).

"Neural efficiency" of athletes’ brain during visuo-spatial task: An fMRI study on table tennis players

Frontiers in Behavioral Neuroscience, 11, 72.

DOI:10.3389/fnbeh.2017.00072      URL     [本文引用: 1]

Hanakawa, T., Immisch, I., Toma, K., Dimyan, M. A., van Gelderen, P., & Hallett, M. (2003).

Functional properties of brain areas associated with motor execution and imagery

Journal of Neurophysiology, 89(2), 989-1002.

DOI:10.1152/jn.00132.2002      PMID:12574475      [本文引用: 1]

Imagining motor acts is a cognitive task that engages parts of the executive motor system. While motor imagery has been intensively studied using neuroimaging techniques, most studies lack behavioral observations. Here, we used functional MRI to compare the functional neuroanatomy of motor execution and imagery using a task that objectively assesses imagery performance. With surface electromyographic monitoring within a scanner, 10 healthy subjects performed sequential finger-tapping movements according to visually presented number stimuli in either a movement or an imagery mode of performance. We also examined effects of varied and fixed stimulus types that differ in stimulus dependency of the task. Statistical parametric mapping revealed movement-predominant activity, imagery-predominant activity, and activity common to both movement and imagery modes of performance (movement-and-imagery activity). The movement-predominant activity included the primary sensory and motor areas, parietal operculum, and anterior cerebellum that had little imagery-related activity (-0.1 ~ 0.1%), and the caudal premotor areas and area 5 that had mild-to-moderate imagery-related activity (0.2 ~ 0.7%). Many frontoparietal areas and posterior cerebellum demonstrated movement-and-imagery activity. Imagery-predominant areas included the precentral sulcus at the level of middle frontal gyrus and the posterior superior parietal cortex/precuneus. Moreover, activity of the superior precentral sulcus and intraparietal sulcus areas, predominantly on the left, was associated with accuracy of the imagery task performance. Activity of the inferior precentral sulcus (area 6/44) showed stimulus-type effect particularly for the imagery mode. A time-course analysis of activity suggested a functional gradient, which was characterized by a more "executive" or more "imaginative" property in many areas related to movement and/or imagery. The results from the present study provide new insights into the functional neuroanatomy of motor imagery, including the effects of imagery performance and stimulus-dependency on brain activity.

Holmes, P. S., & Collins, D. J. (2001).

The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists

Journal of Applied Sport Psychology, 13(1), 60-83.

DOI:10.1080/10413200109339004      URL     [本文引用: 1]

Ives-Deliperi, V. L., Solms, M., & Meintjes, E. M. (2011).

The neural substrates of mindfulness: An fMRI investigation

Social Neuroscience, 6(3), 231-242.

DOI:10.1080/17470919.2010.513495      PMID:20835972      [本文引用: 1]

"Mindfulness" is a capacity for heightened present-moment awareness that we all possess to a greater or lesser extent. Enhancing this capacity through training has been shown to alleviate stress and promote physical and mental well-being. As a consequence, interest in mindfulness is growing and so is the need to better understand it. This study employed functional magnetic resonance imaging (fMRI) to identify the brain regions involved in state mindfulness and to shed light on its mechanisms of action. Significant signal decreases were observed during mindfulness meditation in midline cortical structures associated with interoception, including bilateral anterior insula, left ventral anterior cingulate cortex, right medial prefrontal cortex, and bilateral precuneus. Significant signal increase was noted in the right posterior cingulate cortex. These findings lend support to the theory that mindfulness achieves its positive outcomes through a process of disidentification.

Jerde, T. A., & Curtis, C. E. (2013).

Maps of space in human frontoparietal cortex

Journal of Physiology, 107(6), 510-516.

[本文引用: 1]

Kolb, B., & Gibb, R. (2014).

Searching for the principles of brain plasticity and behavior

Cortex, 58, 251-260.

DOI:10.1016/j.cortex.2013.11.012      PMID:24457097      [本文引用: 1]

An important development in behavioral neuroscience in the past 25 years has been the demonstration that the brain is far more flexible in structure and function than was previously believed. Studies of laboratory animals have provided an important tool for understanding the nature of brain plasticity and behavior at many levels ranging from detailed behavioral paradigms, electrophysiology, neuronal morphology, protein chemistry, and epigenetics. Here we seek a synthesis of the multidisciplinary work on brain plasticity and behavior to identify some general principles on how the brain changes in response to a wide range of experiences over the lifetime. Copyright © 2013 Elsevier Ltd. All rights reserved.

Lafleur, M. F., Jackson, P. L., Malouin, F., Richards, C. L., Evans, A. C., & Doyon, J. (2002).

Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements

NeuroImage, 16(1), 142-157.

DOI:10.1006/nimg.2001.1048      PMID:11969325      [本文引用: 1]

The aim of the present positron emission tomography study was to measure the dynamic changes in cerebral activity before and after practice of an explicitly known sequence of foot movements when executed physically and to compare them to those elicited during motor imagery of the same movements. Nine healthy volunteers were scanned while performing both types of movement at an early phase of learning and after a 1-h training period of a sequence of dorsiflexions and plantarflexions with the left foot. These experimental conditions were compared directly, as well as to a perceptual control condition. Changes in regional cerebral blood flow associated with physical execution of the sequence early in the learning process were observed bilaterally in the dorsal premotor cortex and cerebellum, as well as in the left inferior parietal lobule. After training, however, most of these brain regions were no longer significantly activated, suggesting that they are critical for establishing the cognitive strategies and motor routines involved in executing sequential foot movements. By contrast, after practice, an increased level of activity was seen bilaterally in the medial orbitofrontal cortex and striatum, as well as in the left rostral portion of the anterior cingulate and a different region of the inferior parietal lobule, suggesting that these structures play an important role in the development of a long lasting representation of the sequence. Finally, as predicted, a similar pattern of dynamic changes was observed in both phases of learning during the motor imagery conditions. This last finding suggests that the cerebral plasticity occurring during the incremental acquisition of a motor sequence executed physically is reflected by the covert production of this skilled behavior using motor imagery.2002 Elsevier Science (USA).

Lou, H., & Liu, P. (2020).

The influence of sports training on the brain plasticity of athletes: An ALE analysis of fMRI studies

China Sport Science, 40(7), 65-71.

[本文引用: 1]

[ 娄虎, 刘萍. (2020).

运动训练对运动员大脑功能可塑性变化的影响——基于fMRI研究的ALE分析

体育科学, 40(7), 65-71.]

[本文引用: 1]

Malouin, F. P., Richards, C. L. P., Durand, A. P., & Doyon, J. P. (2008).

Reliability of mental chronometry for assessing motor imagery ability after stroke

Archives of Physical Medicine and Rehabilitation, 89(2), 311-319.

DOI:10.1016/j.apmr.2007.11.006      PMID:18226656      [本文引用: 1]

To examine the reproducibility of 2 chronometric tests: time-dependent motor imagery (TDMI) screening test and temporal congruence test.Test-retest 10 to 14 days apart.Laboratory of a university-affiliated center for research in rehabilitation.Twenty persons post cerebrovascular accident (CVA) and 46 healthy persons (controls).The reproducibility of the TDMI screening test, wherein the number of stepping movements (performed in sitting) imagined over 15, 25, and 45 seconds is recorded, and of the temporal congruence test wherein the duration of physically executed (E) and imagined (I) stepping movements is recorded, was evaluated.The test-retest reliability of the number of imagined movements (TDMI screening test), movement duration and I/E time ratios (temporal congruence test), and intrasession reliability of the temporal congruence test were assessed by using intraclass correlation coefficients (ICCs).For the TDMI screening test, the ICCs ranged from.88 to.93 (CVA, n=20) and from.87 to.92 (controls, n=9). For the temporal congruence test, when the total duration of 2 series of 5 stepping movements was averaged, ICCs ranged from.76 to.97 (CVA, n=20) and from.77 to.93 (controls, n=46), whereas for 1 series the ICCs ranged from.71 to.95 and from.63 to.95 in the CVA and control groups, respectively. The ICCs for intrasession reliability for the CVA (n=20) and control (n=46) groups, respectively, ranged from.90 to.98 and.95 to.97.The present findings support the reproducibility of both tests in both groups. Mental chronometry can be used reliably for the screening of patients capable of motor imagery or for measuring temporal congruence between real and imagined movements poststroke.

Marchand, W. R., Lee, J. N., Suchy, Y., Garn, C., Chelune, G., Johnson, S., & Wood, N. (2013).

Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects

Human Brain Mapping, 34(5), 1194-1207.

DOI:10.1002/hbm.21505      PMID:22287185      [本文引用: 1]

The primary aim of this study was to enhance our understanding of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. Twenty right-handed female subjects without any history of neuropsychiatric illness underwent fMRI at 3 T. The activation paradigm was a complex motor task completed with the nondominant hand. Analyses of functional connectivity strength were conducted for pairs of structures in input, intrinsic, and output segments of the circuitry. Next, connectivity strengths were correlated with results of neurocognitive testing conducted outside of the scanner, which provided information about both motor and cognitive processes. For input pathways, results indicate that SMA-striatum interactions are particularly relevant for motor behavior and disruptions may impact both motor and cognitive functions. For intrinsic pathways, results indicate that thalamus (VA nucleus) to striatum feedback pathway appears to have an important role during task execution and carries information relevant for motor planning. Together, these findings add to accumulating evidence that the GPe may play a role in higher order basal ganglia processing. A potentially controversial finding was that strong functional connectivity appears to occur across intrinsic inhibitory pathways. Finally, output (thalamus to cortex) feedback was only correlated with motor planning. This result suggests circuit processes may be more relevant for future behaviors than the execution of the current task.Copyright © 2012 Wiley Periodicals, Inc.

Nakano, H., Murata, S., Shiraiwa, K., & Nonaka, K. (2020).

Increased time difference between imagined and physical walking in older adults at a high risk of falling

Brain Sciences, 10(6), 332.

DOI:10.3390/brainsci10060332      URL     [本文引用: 1]

Walking motor imagery ability is thought to be associated with a fear of falling; however, no studies have compared fall risk and motor imagery ability. This study aimed to ascertain the time difference between imagined and physical walking in older adults at low and high risks of falling. Motor imagery ability was assessed using mental chronometry, which measures the imagined time required for movement. Participants included 31 older adults classified as having a high (n = 15) or low (n = 16) risk of falling based on single leg stance time. The time required for imagined and physical walking was measured using 5 m long walkways with three different widths (15, 25, and 50 cm), and the temporal errors (absolute and constant error) were compared. Physical walking time was significantly longer in the high-risk group than in the low-risk group for the 15 and 25 cm wide walkways. The absolute error between the imagined and physical walking times was significantly larger in the high-risk group than in the low-risk group for the 15 and 25 cm wide walkways. There was also a significant difference in the constant error between the high- and low-risk groups between the imagined and physical walking times for all three walkways. Older adults who may be at a higher risk of falling showed longer walking times during action execution but overestimated their performance (i.e., they believe they would be faster) during motor imagery. Therefore, the time difference between imagined and physical walking could, in part, be useful as a tool for assessing fall risk based on motor imagery.

Oshio, R., Tanaka, S., Sadato, N., Sokabe, M., Hanakawa, T., & Honda, M. (2010).

Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information

NeuroImage, 49(1), 1108-1115.

DOI:10.1016/j.neuroimage.2009.07.034      PMID:19632337      [本文引用: 1]

Human neuro-imaging studies have often reported co-activation of the dorsal premotor cortex (PMd) and the posterior parietal cortex (PPC) during internal operation of visuospatial information, referred to here as "visuospatial mental operation". However, the functions assigned to the PMd and PPC during these tasks are still unclear. Here, we examined the significance of these two areas for a visuospatial mental operation using the transcranial magnetic stimulation (TMS) technique. Subjects performed a task in which a visuospatial mental operation was required. A localization study conducted prior to the TMS experiment using functional magnetic resonance imaging (fMRI) revealed that the PMd and the medial part of the PPC, precuneus (PCu), were specifically activated during the visuospatial mental operation. Then, we impeded the activities of the PMd and the PCu in the right hemisphere during the same task using double-pulse TMS to determine whether these activities were necessary for the task. The TMS was applied at different times in relation to the visuospatial mental operation cue. Consequently, only the TMS applied at 300 ms after the cue affected the task performance. Furthermore, we found that the TMS at this time to each area differentially affected the performance: TMS to the PMd hindered the performance of the task whereas TMS to the PCu facilitated it without a speed/accuracy trade-off. These effects were not found in the control condition that lacked a visuospatial mental operation. These findings suggest that the PMd and the PCu are involved in differential aspects of visuospatial mental operations.

Park, J.-W., Kim, Y.-H., Jang, S. H., Chang, W. H., Park, C.-H., & Kim, S. T. (2010).

Dynamic changes in the cortico-subcortical network during early motor learning

NeuroRehabilitation, 26(2), 95-103.

DOI:10.3233/NRE-2010-0540      URL     [本文引用: 1]

Port, A. P., Santaella, D. F., Lacerda, S. S., Speciali, D. S., Balardin, J. B., Lopes, P. B.,... Kozasa, E. H. (2018).

Cognition and brain function in elderly Tai Chi practitioners: A case-control study

Explore, 14(5), 352-356.

DOI:10.1016/j.explore.2018.04.007      URL     [本文引用: 1]

Ren, Z., Hu, L., Zhang, Y., Xu, M., Li, L., Xia, F., & Huang, R. (2019).

A review of brain plasticity of motor skill experts: Evidence from magnetic resonance imaging

China Sport Science and Technology, 55(2), 3-18.

[本文引用: 1]

[ 任占兵, 胡琳琳, 张远超, 徐敏, 李论雄, 夏丰光, 黄瑞旺. (2019).

运动技能专家脑可塑性研究进展: 来自磁共振成像的证据

中国体育科技, 55(2), 3-18.]

[本文引用: 1]

Ross, J. S., Tkach, J., Ruggieri, P. M., Lieber, M., & Lapresto, E. (2003).

The mind's eye: Functional MR imaging evaluation of golf motor imagery

American Journal of Neuroradiology. 24(6), 1036-1044.

PMID:12812924      [本文引用: 1]

Mental imagery involves rehearsing or practicing a task in the mind with no physical movement. The technique is commonly used, but the actual physical foundation of imagery has not been evaluated for the fast, complex, automatic motor movement of the golf swing. This study evaluated motor imagery of the golf swing, of golfers of various handicaps, by using functional MR imaging to assess whether areas of brain activation could be defined by this technique and to define any association between activated brain areas and golf skill.Six golfers of various handicap levels were evaluated with functional MR imaging during a control condition and during mental imagery of their golf swing. Two control conditions were evaluated--"rest" and "wall"--and were then subtracted from the experimental condition to give the functional activation map. These control conditions were then tested against the golf imagery; the participants were told to mentally rehearse their golf swings from a first person perspective. The percentages of activated pixels in 137 defined regions of interest were calculated.The "rest-versus-golf" paradigm showed activation in motor cortex, parietal cortex, frontal lobe, cerebellum, vermis, and action planning areas (frontal and parietal cortices, supplementary motor area, cerebellum) and areas involved with error detection (cerebellum). Vermis, supplementary motor area, cerebellum, and motor regions generally showed the greatest activation. Little activation was seen in the cingulate gyrus, right temporal lobe, deep gray matter, and brain stem. A correlation existed between increased number of areas of activation and increased handicap.This study showed the feasibility of defining areas of brain activation during imagery of a complex, coordinated motor task. Decreased brain activation occurred with increased golf skill level for the supplementary motor area and cerebellum with little activation of basal ganglia.

Sale, A., Berardi, N., & Maffei, L. (2014).

Environment and brain plasticity: Towards an endogenous pharmacotherapy

Physiological Reviews, 94(1), 189-234.

DOI:10.1152/physrev.00036.2012      PMID:24382886      [本文引用: 1]

Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.

Shen, C., Wu, Y., Zhang, L., Zhu, H., Dai, W., Li, X.,... Tan, X. (2016).

The effect of different proprioception input on motor imagery of complex movement: A fMRI study

Journal of Tianjin University of Sport, 31(3), 227-232.

[本文引用: 2]

[ 沈诚, 吴殷, 张兰兰, 朱桦, 戴雯, 李雪佩,... 谭晓缨. (2016).

不同本体感觉输入对复杂运动动作表象的影响: fMRI研究

天津体育学院学报, 31(3), 227-232.]

[本文引用: 2]

Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012).

How is a motor skill learned? Change and invariance at the levels of task success and trajectory control

Journal of Neurophysiology, 108(2), 578-594.

DOI:10.1152/jn.00856.2011      PMID:22514286      [本文引用: 1]

The public pays large sums of money to watch skilled motor performance. Notably, however, in recent decades motor skill learning (performance improvement beyond baseline levels) has received less experimental attention than motor adaptation (return to baseline performance in the setting of an external perturbation). Motor skill can be assessed at the levels of task success and movement quality, but the link between these levels remains poorly understood. We devised a motor skill task that required visually guided curved movements of the wrist without a perturbation, and we defined skill learning at the task level as a change in the speed-accuracy trade-off function (SAF). Practice in restricted speed ranges led to a global shift of the SAF. We asked how the SAF shift maps onto changes in trajectory kinematics, to establish a link between task-level performance and fine motor control. Although there were small changes in mean trajectory, improved performance largely consisted of reduction in trial-to-trial variability and increase in movement smoothness. We found evidence for improved feedback control, which could explain the reduction in variability but does not preclude other explanations such as an increased signal-to-noise ratio in cortical representations. Interestingly, submovement structure remained learning invariant. The global generalization of the SAF across a wide range of difficulty suggests that skill for this task is represented in a temporally scalable network. We propose that motor skill acquisition can be characterized as a slow reduction in movement variability, which is distinct from faster model-based learning that reduces systematic error in adaptation paradigms.

Tamè, L., Braun, C., Holmes, N. P., Farnè, A., & Pavani, F. (2016).

Bilateral representations of touch in the primary somatosensory cortex

Cognitive Neuropsychology, 33(1-2), 48-66.

DOI:10.1080/02643294.2016.1159547      PMID:27314449      [本文引用: 1]

According to current textbook knowledge, the primary somatosensory cortex (SI) supports unilateral tactile representations, whereas structures beyond SI, in particular the secondary somatosensory cortex (SII), support bilateral tactile representations. However, dexterous and well-coordinated bimanual motor tasks require early integration of bilateral tactile information. Sequential processing, first of unilateral and subsequently of bilateral sensory information, might not be sufficient to accomplish these tasks. This view of sequential processing in the somatosensory system might therefore be questioned, at least for demanding bimanual tasks. Evidence from the last 15 years is forcing a revision of this textbook notion. Studies in animals and humans indicate that SI is more than a simple relay for unilateral sensory information and, together with SII, contributes to the integration of somatosensory inputs from both sides of the body. Here, we review a series of recent works from our own and other laboratories in favour of interactions between tactile stimuli on the two sides of the body at early stages of processing. We focus on tactile processing, although a similar logic may also apply to other aspects of somatosensation. We begin by describing the basic anatomy and physiology of interhemispheric transfer, drawing on neurophysiological studies in animals and behavioural studies in humans that showed tactile interactions between body sides, both in healthy and in brain-damaged individuals. Then we describe the neural substrates of bilateral interactions in somatosensation as revealed by neurophysiological work in animals and neuroimaging studies in humans (i.e., functional magnetic resonance imaging, magnetoencephalography, and transcranial magnetic stimulation). Finally, we conclude with considerations on the dilemma of how efficiently integrating bilateral sensory information at early processing stages can coexist with more lateralized representations of somatosensory input, in the context of motor control.

Tao, J., Liu, J., Egorova, N., Chen, X., Sun, S., Xue, X.,... Kong, J. (2016).

Increased hippocampus-medial prefrontal cortex resting-state functional connectivity and memory function after Tai Chi Chuan practice in elder adults

Frontiers in Aging Neuroscience, 8, 25.

DOI:10.3389/fnagi.2016.00025      PMID:26909038      [本文引用: 1]

Previous studies provide evidence that aging is associated with the decline of memory function and alterations in the hippocampal (HPC) function, including functional connectivity to the medial prefrontal cortex (mPFC). In this study, we investigated if longitudinal (12-week) Tai Chi Chuan and Baduanjin practice can improve memory function and modulate HPC resting-state functional connectivity (rs-FC). Memory function measurements and resting-state functional magnetic resonance imaging (rs-fMRI) were applied at the beginning and the end of the experiment. The results showed that (1) the memory quotient (MQ) measured by the Wechsler Memory Scale-Chinese Revision significantly increased after Tai Chi Chuan and Baduanjin practice as compared with the control group, and no significant difference was observed in MQ between the Tai Chi Chuan and Baduanjin groups; (2) rs-FC between the bilateral hippocampus and mPFC significantly increased in the Tai Chi Chuan group compared to the control group (also in the Baduanjin group compared to the control group, albeit at a lower threshold), and no significant difference between the Tai Chi Chuan and Baduanjin groups was observed; (3) rs-FC increases between the bilateral hippocampus and mPFC were significantly associated with corresponding memory function improvement across all subjects. Similar results were observed using the left or right hippocampus as seeds. Our results suggest that both Tai Chi Chuan and Baduanjin may be effective exercises to prevent memory decline during aging.

Tkach, D., Reimer, J., & Hatsopoulos, N. G. (2007).

Congruent activity during action and action observation in motor cortex

The Journal of Neuroscience, 27(48), 13241-13250.

DOI:10.1523/JNEUROSCI.2895-07.2007      URL     [本文引用: 1]

A variety of studies have shown that motor cortical areas can be activated by observation of familiar actions. Here, we describe single-neuron responses in monkey primary motor (MI) and dorsal premotor (PMd) cortices during passive observation and execution of a familiar task. We show that the spiking modulation, preferred directions, and encoded information of cells in MI and PMd remain consistent during both observation and movement. Furthermore, we find that the presence of a visual target is necessary to elicit this congruent neural activity during observation. These findings along with results from our analysis of the oscillatory power in the beta frequency of the local field potential are consistent with previous imaging and EEG studies that have suggested that congruence between observation and action is a general feature of the motor system, even outside of canonical “mirror” areas. Such congruent activity has proposed relevance to motor learning, mimicry, and communication and has practical applications for the development of motor-cortical neuroprostheses in paralyzed patients.

Tomasino, B., Maieron, M., Guatto, E., Fabbro, F., & Rumiati, R. I. (2013).

How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise?

Brain Research, 1540, 21-41.

DOI:10.1016/j.brainres.2013.09.048      PMID:24099840      [本文引用: 1]

Expertise offers a unique insight into how our brain functions. The purpose of this experiment was to determine if motor system activity and functional connectivity between the cognitive system and sensorimotor system is differentially modulated by an individual's level of expertise. This goal was achieved through the acquisition of functional neuroimaging data in 10 expert volleyball players and 10 novice individuals who were presented with a series of sentences describing possible technical volleyball-specific motor acts and acts that cannot be performed as positive ("Do …!") or negative ("Don't …") commands, while they were silently reading them and deciding whether the actions were technically feasible or not. Compared with novices, experts' activity in the left primary motor cortex hand area (M1) and in the left premotor cortex (Pm) was decreased by impossible actions presented as positive commands. Sensorimotor activation in response to action-related stimuli is not that automatic as held since we found that these areas were deactivated during the task, and their functional connectivity to the primary visual cortex was strengthened for possible actions presented as positive commands, reflecting the neural processes underlying the interaction between motor and visual imagery. These results suggest that the neural activity within the key areas implicitly triggered by motor simulation is a function of the expertise, action feasibility, and context. © 2013 Elsevier B.V. All rights reserved.

Utevsky, A. V., Smith, D. V., & Huettel, S. A. (2014).

Precuneus is a functional core of the default-mode network

The Journal of Neuroscience, 34(3), 932-940.

DOI:10.1523/JNEUROSCI.4227-13.2014      URL     [本文引用: 1]

Efforts to understand the functional architecture of the brain have consistently identified multiple overlapping large-scale neural networks that are observable across multiple states. Despite the ubiquity of these networks, it remains unclear how regions within these large-scale neural networks interact to orchestrate behavior. Here, we collected functional magnetic resonance imaging data from 188 human subjects who engaged in three cognitive tasks and a resting-state scan. Using multiple tasks and a large sample allowed us to use split-sample validations to test for replication of results. We parceled the task-rest pairs into functional networks using a probabilistic spatial independent components analysis. We examined changes in connectivity between task and rest states using dual-regression analysis, which quantifies voxelwise connectivity estimates for each network of interest while controlling for the influence of signals arising from other networks and artifacts. Our analyses revealed systematic state-dependent functional connectivity in one brain region: the precuneus. Specifically, task performance led to increased connectivity (compared to rest) between the precuneus and the left frontoparietal network (lFPN), whereas rest increased connectivity between the precuneus and the default-mode network (DMN). The absolute magnitude of this effect was greater for DMN, suggesting a heightened specialization for resting-state cognition. All results replicated within the two independent samples. Our results indicate that the precuneus plays a core role not only in DMN, but also more broadly through its engagement under a variety of processing states.

Wang, H., Xu, G., Wang, X., Sun, C., Zhu, B., Fan, M.,... Sun, L. (2019).

The reorganization of resting-state brain networks associated with motor imagery training in chronic stroke patients

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(10), 2237-2245.

DOI:10.1109/TNSRE.2019.2940980      PMID:31536007      [本文引用: 1]

A number of studies have suggested that motor imagery training (MIT) has a positive influence on the upper extremity motor recovery in stroke patients, but little is known about its neural basis. To investigate the cortical motor network plasticity after MIT, 34 chronic hemiplegic subjects with subcortical stroke were recruited and randomly allocated to either the conventional rehabilitation therapy (CRT) or the CRT + MIT. The patients were assessed with the upper limb section of Fugl-Meyer assessment Scale (FM-UL) and resting-state fMRI before and after the 4 weeks of treatment. Seed-based functional connectivity (FC) of the ipsilesional primary motor cortex (M1) and graph-theory based analysis were used to explore the relationships between the motor recovery and reorganization of motor networks. We found that the patients in the MIT group showed more improvement in the FM-UL scores compared with the CRT group. Both groups presented increased inter-hemispheric and decreased intra-hemispheric FC of the ipsilesional M1 after intervention. However, the MIT group showed increased FC of the ipsilesional M1 with the ipsilesional precentral and postcentral gyri, middle cingulate gyrus and supramarginal gyrus after intervention, while the CRT group showed decreased FC in these regions. In addition, the clustering coefficient was significantly increased in the MIT group but not in the CRT group, and the increment of clustering coefficient was significantly positively correlated with improvement of FM-UL scores. Therefore, MIT might contribute to the motor recovery in stroke patients through the following network reorganization, i.e., promoting the efficiency of regional neuronal communication and the reorganization of intrinsic FC of the ipsilesional M1 involving widely distributed motor network in both hemispheres.

Wei, G., & Luo, J. (2009).

Sport expert's motor imagery: Functional imaging of professional motor skills and simple motor skills

Brain Research, 1341, 52-62.

DOI:10.1016/j.brainres.2009.08.014      URL     [本文引用: 2]

Wei, G.-X., Dong, H.-M., Yang, Z., Luo, J., & Zuo, X.-N. (2014).

Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults

Frontiers in Aging Neuroscience, 6, 74.

[本文引用: 2]

Williams, S., Cumming, J., Ntoumanis, N., Nordin-Bates, S. M., Ramsey, R., & Hall, C. (2012).

Further validation and development of the movement imagery questionnaire

Journal of Sport & Exercise Psychology, 34(5), 621-646.

[本文引用: 1]

Wu, M.-T., Tang, P.-F., Goh, J. O. S., Chou, T.-L., Chang, Y.-K., Hsu, Y.-C.,... Lan, C. (2018).

Task-switching performance improvements after Tai Chi Chuan training are associated with greater prefrontal activation in older adults

Frontiers in Aging Neuroscience, 10, 280.

DOI:10.3389/fnagi.2018.00280      URL     [本文引用: 1]

Yamashita, M., Suzuki, M., Kawagoe, T., Asano, K., Futada, M., Nakai, R.,... Sekiyama, K. (2021).

Impact of early- commenced and continued sports training on the precuneus in older athletes

Frontiers in Human Neuroscience, 15, 766935-766935.

DOI:10.3389/fnhum.2021.766935      URL     [本文引用: 1]

Intervention studies on sedentary older adults have demonstrated that commencing physical exercise at an older age has a positive effect on brain structure. Although this suggests that older athletes with lifelong sports training have larger gray matter volume (GMV) in some brain regions compared to age-matched non-athletes, evidence in the literature is scarce. Moreover, it remains unclear whether a larger GMV is associated with training intensity or period of training in life. To address these gaps in the literature, we compared regional brain GMV between 24 older athletes (mean age, 71.4 years; age at the commencement of sports training, 31.2 years, continuous sports training, 40.0 years; current training time, 7.9 h/week) and 24 age-matched non-athletes (mean age, 71.0 years). The period of sports training and the current training time of the athletes were assessed. Both groups were evaluated for physical activity intensity as well as cognitive and motor performance. Although no group differences were noted in cognitive and motor performance, athletes reported higher physical activity intensity than non-athletes. Whole-brain structural analysis revealed a significantly larger GMV in several brain regions in athletes. Notably, the GMV of the precuneus in athletes was positively correlated with earlier commencement of sports training and training duration but was negatively correlated with current training time. Our findings demonstrate that early-commenced and continued sports training predicts structural maintenance of the precuneus in old age. Our results also suggest that excessive training time in old age may have a negative impact on the GMV of the precuneus; thereby delineating how the precuneus is associated with lifelong sports training in older athletes.

Yang, J. (2015).

The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies

Cognitive, Affective, & Behavioral Neuroscience, 15(2), 381-394.

[本文引用: 1]

You, M., Liu, L., Fan, R., & Tong, J. (2020).

Design and effect evaluation of the performance of specific imagery training program: A case study of free throw

Journal of Shanghai University of Sport, 44(11), 28-37.

[本文引用: 1]

[ 游茂林, 刘良辉, 樊荣, 童靖然. (2020).

专项表象训练方案设计与效果测评——以篮球罚球训练为例

上海体育学院学报, 44(11), 28-37.]

[本文引用: 1]

Yue, C., Yu, Q., Zhang, Y., Herold, F., Mei, J., Kong, Z.,... Zou, L. (2020).

Regular Tai Chi practice is associated with improved memory as well as structural and functional alterations of the hippocampus in the elderly

Frontiers in Aging Neuroscience, 12, 586770.

DOI:10.3389/fnagi.2020.586770      URL     [本文引用: 1]

Zhang, L., Shen, C., Zhu, H., Li, X., Dai, W., Wu, Y., & Zhang, J. (2017).

The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot

Acta Psychologica Sinica, 49(3), 307-316.

DOI:10.3724/SP.J.1041.2017.00307      [本文引用: 2]

The behavioral performance and neural responses of imagining a motor task may be different in individuals with different motor skill levels. Utilization of special instrument induces plastic changes in the brain in the way that tool users combine the tool in their body schema. However, the neural correlates underlying these effects are still not clear. Using functional magnetic resonance imaging (fMRI), we investigated the effects of motor skill level and somatosensory input on motor imagery. We tested 12 basketball players and 12 novices when they performed kinesthetic motor imagery of basketball free shot under with-ball and without-ball conditions. Motor imagery duration was calculated. Motor imagery strategy and quality were measured with self-evaluation questionnaires. Field training was implemented and the physical performance of the task was recorded before the main experiment. The time difference between the duration for motor imagery and physical performance was smaller in basketball players than that in novices. The motor imagery strategy scores with self-evaluation questionnaire were same in two groups, indicating that all participants performed kinesthetic imagery successfully. The general kinesthetic and visual imagery abilities between groups showed no significant differences whereas basketball players showed better kinesthetic imagery quality for free shot movements. The scores for the quality of both kinesthetic and visual imagery were higher under with-ball than that under without-ball condition in both groups, suggesting that participants in both groups performed better motor imagery under with-ball condition. fMRI analysis revealed (1) basketball players showed greater mirror neuron system activation relative to novices; (2) the activation of mirror neuron system in basketball players were lower in with-ball compared to without-ball condition. Moreover, the activity of right inferior frontal gyrus was negatively correlated with the self-evaluated kinesthetic imagery scores only for the basketball players. We conclude that better motor imagery is related to higher level motor skill. The application of task- specific instrument may be required for this facilitation effect. Utilization of special instrument induces plastic changes in mirror neuron system. The findings may provide evidence for the implication of motor imagery with utilization of specific instrument in the promotion of motor skill.

[ 张兰兰, 沈诚, 朱桦, 李雪佩, 戴雯, 吴殷, 张剑. (2017).

运动技能水平与躯体感觉输入对运动表象的影响

心理学报, 49(3), 307-316.]

[本文引用: 2]

Zhang, L.-L., Pi, Y.-L., Shen, C., Zhu, H., Li, X.-P., Ni, Z.,... Wu, Y. (2018).

Expertise-level-dependent functionally plastic changes during motor imagery in basketball players

Neuroscience, 380, 78-89.

DOI:10.1016/j.neuroscience.2018.03.050      URL     [本文引用: 2]

Zhang, L. W., & Mao., Z. X. (Eds). (2018). Sports psychology (2nd ed.). Shanghai: East China Normal University Press.

[本文引用: 2]

[ 张力为, 毛志雄. (主编). (2018). 运动心理学 (第2版). 上海: 华东师范大学出版社.]

[本文引用: 2]

Zhang, M., Huang, Y., Gao, Q., & Chen, H. (2020).

Brain plasticity of table tennis athletes based on dynamic amplitude of low-frequency fluctuation method

Journal of Shanghai University of Sport, 44(6), 62-69.

[本文引用: 1]

[ 张牧, 黄月, 高晴, 陈华富. (2020).

基于动态低频振荡振幅方法的乒乓球运动员脑可塑性变化

上海体育学院学报, 44(6), 62-69.]

[本文引用: 1]

Zhao, Q., Lu, Y., Wang, Y., & Zhou, C. (2017).

The optimization in sensorimotor system in dancers: Evidences from resting state fMRI

Chinese Journal of Sports Medicine, 36(12), 1081-1086.

[本文引用: 1]

[ 赵琦, 陆颖之, 王莹莹, 周成林. (2017).

舞蹈运动员大脑感知运动系统的功能特征——一项静息态功能磁共振研究

中国运动医学杂志, 36(12), 1081-1086.]

[本文引用: 1]

Zhong, X., & Ke, M. (2011).

Experimental study of internal and external imagery training on table tennis skill learning

Journal of Capital University of Physical Education and Sports, 23(2), 165-168.

[本文引用: 1]

[ 钟霞, 柯敏. (2011).

内-外表象训练影响乒乓球技能学习的教学实验

首都体育学院学报, 23(2), 165-168.]

[本文引用: 1]

Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players 1 2012 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Neuronal bases of structural coherence in contemporary dance observation 1 2016 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study 1 2016 ... 采用Williams等人(2012)修订的运动表象问卷(Movement Imagery Questionnaire-3, MIQ-3)对被试的运动表象能力进行评估, 该问卷具有良好的信效度.问卷共包含12道题, 要求被试对所描述的动作进行动觉或视觉表象, 随后要求被试对表象动作的难易程度进行7点评分, 1为“很难感受到或看到”, 7为“很容易感受到或看到”, 分别评估动觉(问卷1~4题)和视觉(问卷5~12题)表象能力.由于本研究重点关注动觉表象, 参照前人研究对被试的筛选方法(白学军 等, 2016; 沈诚 等, 2016), 以动觉表象(问卷1~4题)平均分超过4为入组标准, 本研究被试全部符合要求. ... 基于fNIRS的运动执行与运动想象脑激活模式比较 1 2016 ... 采用Williams等人(2012)修订的运动表象问卷(Movement Imagery Questionnaire-3, MIQ-3)对被试的运动表象能力进行评估, 该问卷具有良好的信效度.问卷共包含12道题, 要求被试对所描述的动作进行动觉或视觉表象, 随后要求被试对表象动作的难易程度进行7点评分, 1为“很难感受到或看到”, 7为“很容易感受到或看到”, 分别评估动觉(问卷1~4题)和视觉(问卷5~12题)表象能力.由于本研究重点关注动觉表象, 参照前人研究对被试的筛选方法(白学军 等, 2016; 沈诚 等, 2016), 以动觉表象(问卷1~4题)平均分超过4为入组标准, 本研究被试全部符合要求. ... Neural bases for anticipation skill in soccer: An fMRI study 1 2013 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... 2 2019 ... 运动技能(motor skill)是指借助于神经、骨骼和肌肉系统来实现在身体活动中所需的各种行为操作, 通常是由多个动作单元构成的复杂系统, 需要在学习过程中通过反复练习逐步形成和发展(Shmuelof et al., 2012).运动技能水平会随着学习进程的推进而逐步提高, 但受技能复杂程度、学习方法等因素的影响, 技能提高的速度会呈现出不同的趋势, 有的运动技能(如短跑等)在学习开始阶段提高迅速, 之后提升速度逐渐减缓; 有的运动技能(如游泳等)在学习开始阶段技能提高比较缓慢, 学习一段时间后技能提高逐渐加快; 而有一些运动技能(如网球等)在学习过程中还会出现技能提高暂时变缓甚至停顿的情况(陈琦, 刘儒德, 2019; 张力为, 毛志雄, 2018).总的来说, 在运动技能学习过程中, 学习者的技能提高速度会表现出较为显著的阶段性的变化特点, 但在此过程中大脑功能发生了怎样的变化?却鲜有研究进行过探索. ...

... 本研究发现, 在太极拳技能学习的早期, 技能提高的速度并不是呈线性上升的, 而是显示出了明显的阶段性, 具体表现为从2周到8周技能水平变化不大, 而从8周到14周技能水平显著提高, 表现出先慢后快的变化特点.陈琦和刘儒德(2019)以及张力为和毛志雄(2018)认为, 技能学习过程中技能水平的提高呈现先慢后快的特点可能是因为个体新学习的动作技能和过去已有的动作经验关联不大, 可以利用的动作结构比较有限, 需要在一些基本动作上投入较多的精力, 因此刚开始学习时技能变化速度较为缓慢, 经过一段时间的学习, 一旦掌握了基本的动作结构, 技能水平的提高速度就会显著加快.本研究中的太极拳是一项包含了一系列手脚协同且精细、连贯的动作组成的复杂运动技能, 具有节奏缓慢、强度适中及身心合一的特点.在刚开始单个基本动作的学习阶段, 学习者可以利用的运动经验较少, 动作的协调和控制较差, 需要不断重复练习建立新的动作联结, 因此这一阶段技能水平变化不大.待掌握了单个基本动作后, 将这些单个动作组合成完整动作结构就相对容易, 学习者只需要思考动作之间的前后顺序和连接动作, 相对前一个阶段学习难度有所下降, 动作的协调性越来越好, 因此这一阶段技能提升速度会加快. ... 2 2019 ... 运动技能(motor skill)是指借助于神经、骨骼和肌肉系统来实现在身体活动中所需的各种行为操作, 通常是由多个动作单元构成的复杂系统, 需要在学习过程中通过反复练习逐步形成和发展(Shmuelof et al., 2012).运动技能水平会随着学习进程的推进而逐步提高, 但受技能复杂程度、学习方法等因素的影响, 技能提高的速度会呈现出不同的趋势, 有的运动技能(如短跑等)在学习开始阶段提高迅速, 之后提升速度逐渐减缓; 有的运动技能(如游泳等)在学习开始阶段技能提高比较缓慢, 学习一段时间后技能提高逐渐加快; 而有一些运动技能(如网球等)在学习过程中还会出现技能提高暂时变缓甚至停顿的情况(陈琦, 刘儒德, 2019; 张力为, 毛志雄, 2018).总的来说, 在运动技能学习过程中, 学习者的技能提高速度会表现出较为显著的阶段性的变化特点, 但在此过程中大脑功能发生了怎样的变化?却鲜有研究进行过探索. ...

... 本研究发现, 在太极拳技能学习的早期, 技能提高的速度并不是呈线性上升的, 而是显示出了明显的阶段性, 具体表现为从2周到8周技能水平变化不大, 而从8周到14周技能水平显著提高, 表现出先慢后快的变化特点.陈琦和刘儒德(2019)以及张力为和毛志雄(2018)认为, 技能学习过程中技能水平的提高呈现先慢后快的特点可能是因为个体新学习的动作技能和过去已有的动作经验关联不大, 可以利用的动作结构比较有限, 需要在一些基本动作上投入较多的精力, 因此刚开始学习时技能变化速度较为缓慢, 经过一段时间的学习, 一旦掌握了基本的动作结构, 技能水平的提高速度就会显著加快.本研究中的太极拳是一项包含了一系列手脚协同且精细、连贯的动作组成的复杂运动技能, 具有节奏缓慢、强度适中及身心合一的特点.在刚开始单个基本动作的学习阶段, 学习者可以利用的运动经验较少, 动作的协调和控制较差, 需要不断重复练习建立新的动作联结, 因此这一阶段技能水平变化不大.待掌握了单个基本动作后, 将这些单个动作组合成完整动作结构就相对容易, 学习者只需要思考动作之间的前后顺序和连接动作, 相对前一个阶段学习难度有所下降, 动作的协调性越来越好, 因此这一阶段技能提升速度会加快. ... Motor imagery improves balance in older adults 1 2015 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ... Measuring motor imagery using psychometric, behavioral, and psychophysiological tools 2 2011 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ...

... 运动表象和运动实际执行的时间一致性是反映和评价运动表象质量的常用指标之一(Collet et al., 2011; Guillot et al., 2012; Malouin et al., 2008).运动表象时间与运动实际执行时间越接近, 时间一致性数值越小, 说明运动表象质量就越好(Nakano et al., 2020).参照沈诚等人(2016)的做法, 本研究采用运动表象时间与实际执行时间差值的绝对值.运动表象时间为被试进入MRI扫描仪完成表象任务的平均时间(4个动作, 每个动作重复8次), 通过E-Prime记录.实际执行时间为每名被试完成12次(4个动作, 每个动作重复3次)动作的平均时间. ... Tai Chi Chuan vs general aerobic exercise in brain plasticity: A multimodal MRI study 1 2019 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Altered resting brain function and structure in professional badminton players 1 2012 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses 1 2009 ... 使用G-power 3.1 (Faul et al., 2009)估计研究中实验组被试所需的样本量, 采用先验(prior)分析方法, 参考张兰兰等人(2017)研究中具有交互作用脑区的效应量, 本研究将效应量(effect size)设置为0.32, Power值(1 − β)设置为0.80, 组数设置为1, 测量数设置为3, α值设置为0.05, 计算出实验组最小样本量为18人. ... The effects of mental practice on motor skill learning and performance: A meta-analysis 1 1983 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... Parietal lobe: From action organization to intention understanding 1 2005 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Brain mechanisms for inferring deceit in the actions of others 1 2004 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Functional neuroanatomical networks associated with expertise in motor imagery 1 2008 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... Understanding the timing of motor imagery: Recent findings and future directions 2 2012 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ...

... 运动表象和运动实际执行的时间一致性是反映和评价运动表象质量的常用指标之一(Collet et al., 2011; Guillot et al., 2012; Malouin et al., 2008).运动表象时间与运动实际执行时间越接近, 时间一致性数值越小, 说明运动表象质量就越好(Nakano et al., 2020).参照沈诚等人(2016)的做法, 本研究采用运动表象时间与实际执行时间差值的绝对值.运动表象时间为被试进入MRI扫描仪完成表象任务的平均时间(4个动作, 每个动作重复8次), 通过E-Prime记录.实际执行时间为每名被试完成12次(4个动作, 每个动作重复3次)动作的平均时间. ... "Neural efficiency" of athletes’ brain during visuo-spatial task: An fMRI study on table tennis players 1 2017 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Functional properties of brain areas associated with motor execution and imagery 1 2003 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists 1 2001 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... The neural substrates of mindfulness: An fMRI investigation 1 2011 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Maps of space in human frontoparietal cortex 1 2013 ... 本研究发现, 运动表象任务在不同时点都激活了类似的额顶认知、运动控制和躯体感觉相关的脑区, 包括额下回、顶下小叶、中央前回、辅助运动区和中央后回等.额顶脑区与高阶认知控制过程相关(Jerde & Curtis, 2013), 中央前回参与运动控制与计划, 辅助运动区还和复杂动作序列的编排有关(Marchand et al., 2013), 而中央后回是参与躯体感觉加工的脑区(Tamè et al., 2016), 三次数据采集都发现了上述脑区的激活, 这可能与太极拳运动表象过程中认知加工和感觉运动加工的整合有关.本研究还发现, 从8周到14周左侧颞上回和左侧楔前叶由表象任务诱发的激活存在显著的增强, 这可能是8周到14周太极拳技能学习过程中, 伴随着技能水平的显著快速提高, 相关脑区激活也显著增强的结果.本研究发现脑区功能的变化和太极拳技能的提高表现出了类似的趋势, 8周到14周既是太极拳技能显著提高的阶段, 也是脑功能显著优化的阶段.而且, 脑和行为的相关分析也发现, 左侧颞上回和左侧楔前叶由表象任务诱发的激活和太极拳的技能水平显著相关, 这进一步说明了太极拳技能学习会对左侧颞上回和左侧楔前叶的功能产生显著的积极影响.值得注意的是, 本研究发现, 从2周到8周, 左侧颞上回的平均信号值虽然出现了暂时的下降, 但是差异并不显著, 推测可能是学习早期, 被试可以利用的已有运动经验较少, 需要不断重复练习单个基本动作, 导致技能的学习出现了一些反复, 表现为这一阶段技能水平变化不大, 因此, 相应的运动表象任务诱发的左侧颞上回的激活也变化不大. ... Searching for the principles of brain plasticity and behavior 1 2014 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements 1 2002 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... The influence of sports training on the brain plasticity of athletes: An ALE analysis of fMRI studies 1 2020 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... 运动训练对运动员大脑功能可塑性变化的影响——基于fMRI研究的ALE分析 1 2020 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Reliability of mental chronometry for assessing motor imagery ability after stroke 1 2008 ... 运动表象和运动实际执行的时间一致性是反映和评价运动表象质量的常用指标之一(Collet et al., 2011; Guillot et al., 2012; Malouin et al., 2008).运动表象时间与运动实际执行时间越接近, 时间一致性数值越小, 说明运动表象质量就越好(Nakano et al., 2020).参照沈诚等人(2016)的做法, 本研究采用运动表象时间与实际执行时间差值的绝对值.运动表象时间为被试进入MRI扫描仪完成表象任务的平均时间(4个动作, 每个动作重复8次), 通过E-Prime记录.实际执行时间为每名被试完成12次(4个动作, 每个动作重复3次)动作的平均时间. ... Functional architecture of the cortico-basal ganglia circuitry during motor task execution: Correlations of strength of functional connectivity with neuropsychological task performance among female subjects 1 2013 ... 本研究发现, 运动表象任务在不同时点都激活了类似的额顶认知、运动控制和躯体感觉相关的脑区, 包括额下回、顶下小叶、中央前回、辅助运动区和中央后回等.额顶脑区与高阶认知控制过程相关(Jerde & Curtis, 2013), 中央前回参与运动控制与计划, 辅助运动区还和复杂动作序列的编排有关(Marchand et al., 2013), 而中央后回是参与躯体感觉加工的脑区(Tamè et al., 2016), 三次数据采集都发现了上述脑区的激活, 这可能与太极拳运动表象过程中认知加工和感觉运动加工的整合有关.本研究还发现, 从8周到14周左侧颞上回和左侧楔前叶由表象任务诱发的激活存在显著的增强, 这可能是8周到14周太极拳技能学习过程中, 伴随着技能水平的显著快速提高, 相关脑区激活也显著增强的结果.本研究发现脑区功能的变化和太极拳技能的提高表现出了类似的趋势, 8周到14周既是太极拳技能显著提高的阶段, 也是脑功能显著优化的阶段.而且, 脑和行为的相关分析也发现, 左侧颞上回和左侧楔前叶由表象任务诱发的激活和太极拳的技能水平显著相关, 这进一步说明了太极拳技能学习会对左侧颞上回和左侧楔前叶的功能产生显著的积极影响.值得注意的是, 本研究发现, 从2周到8周, 左侧颞上回的平均信号值虽然出现了暂时的下降, 但是差异并不显著, 推测可能是学习早期, 被试可以利用的已有运动经验较少, 需要不断重复练习单个基本动作, 导致技能的学习出现了一些反复, 表现为这一阶段技能水平变化不大, 因此, 相应的运动表象任务诱发的左侧颞上回的激活也变化不大. ... Increased time difference between imagined and physical walking in older adults at a high risk of falling 1 2020 ... 运动表象和运动实际执行的时间一致性是反映和评价运动表象质量的常用指标之一(Collet et al., 2011; Guillot et al., 2012; Malouin et al., 2008).运动表象时间与运动实际执行时间越接近, 时间一致性数值越小, 说明运动表象质量就越好(Nakano et al., 2020).参照沈诚等人(2016)的做法, 本研究采用运动表象时间与实际执行时间差值的绝对值.运动表象时间为被试进入MRI扫描仪完成表象任务的平均时间(4个动作, 每个动作重复8次), 通过E-Prime记录.实际执行时间为每名被试完成12次(4个动作, 每个动作重复3次)动作的平均时间. ... Differential effect of double-pulse TMS applied to dorsal premotor cortex and precuneus during internal operation of visuospatial information 1 2010 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Dynamic changes in the cortico-subcortical network during early motor learning 1 2010 ... 对手指序列动作技能学习过程的研究发现(Park et al., 2010), 在技能学习早期(前4分钟左右), 技能水平先显著提高, 后趋于稳定, 同时在感觉运动皮层、辅助运动区等脑区的激活也出现了先增加后降低的变化特点.从该研究可知, 简单动作技能学习早期, 大脑相应脑区的功能变化与技能水平的变化具有相关性, 那么, 复杂运动技能学习的早期过程是否也具有同样的表现?目前尚未得知. ... Cognition and brain function in elderly Tai Chi practitioners: A case-control study 1 2018 ... 太极拳起源于中国古代道教文化, 是需要上、下肢和躯干协调配合的复杂运动技能.太极拳运动过程中需要身体、认知和冥想等共同参与.近些年的研究发现, 与新手相比, 长期练习太极拳的老年人在海马和梭状回区域的局部一致性(ReHo)更高(Yue et al., 2020); 在额顶控制网络的低频振幅率(fALFF)更低(Wei et al., 2014); 在完成n-back工作记忆任务时, 额上回等脑区的激活更低(Port et al., 2018).但上述研究呈现的都是太极拳长期学习引起的脑功能变化, 对太极拳技能学习早期大脑功能的动态变化尚不清楚. ... A review of brain plasticity of motor skill experts: Evidence from magnetic resonance imaging 1 2019 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... 运动技能专家脑可塑性研究进展: 来自磁共振成像的证据 1 2019 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... The mind's eye: Functional MR imaging evaluation of golf motor imagery 1 2003 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... Environment and brain plasticity: Towards an endogenous pharmacotherapy 1 2014 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... The effect of different proprioception input on motor imagery of complex movement: A fMRI study 2 2016 ... 采用Williams等人(2012)修订的运动表象问卷(Movement Imagery Questionnaire-3, MIQ-3)对被试的运动表象能力进行评估, 该问卷具有良好的信效度.问卷共包含12道题, 要求被试对所描述的动作进行动觉或视觉表象, 随后要求被试对表象动作的难易程度进行7点评分, 1为“很难感受到或看到”, 7为“很容易感受到或看到”, 分别评估动觉(问卷1~4题)和视觉(问卷5~12题)表象能力.由于本研究重点关注动觉表象, 参照前人研究对被试的筛选方法(白学军 等, 2016; 沈诚 等, 2016), 以动觉表象(问卷1~4题)平均分超过4为入组标准, 本研究被试全部符合要求. ...

... 运动表象和运动实际执行的时间一致性是反映和评价运动表象质量的常用指标之一(Collet et al., 2011; Guillot et al., 2012; Malouin et al., 2008).运动表象时间与运动实际执行时间越接近, 时间一致性数值越小, 说明运动表象质量就越好(Nakano et al., 2020).参照沈诚等人(2016)的做法, 本研究采用运动表象时间与实际执行时间差值的绝对值.运动表象时间为被试进入MRI扫描仪完成表象任务的平均时间(4个动作, 每个动作重复8次), 通过E-Prime记录.实际执行时间为每名被试完成12次(4个动作, 每个动作重复3次)动作的平均时间. ... 不同本体感觉输入对复杂运动动作表象的影响: fMRI研究 2 2016 ... 采用Williams等人(2012)修订的运动表象问卷(Movement Imagery Questionnaire-3, MIQ-3)对被试的运动表象能力进行评估, 该问卷具有良好的信效度.问卷共包含12道题, 要求被试对所描述的动作进行动觉或视觉表象, 随后要求被试对表象动作的难易程度进行7点评分, 1为“很难感受到或看到”, 7为“很容易感受到或看到”, 分别评估动觉(问卷1~4题)和视觉(问卷5~12题)表象能力.由于本研究重点关注动觉表象, 参照前人研究对被试的筛选方法(白学军 等, 2016; 沈诚 等, 2016), 以动觉表象(问卷1~4题)平均分超过4为入组标准, 本研究被试全部符合要求. ...

... 运动表象和运动实际执行的时间一致性是反映和评价运动表象质量的常用指标之一(Collet et al., 2011; Guillot et al., 2012; Malouin et al., 2008).运动表象时间与运动实际执行时间越接近, 时间一致性数值越小, 说明运动表象质量就越好(Nakano et al., 2020).参照沈诚等人(2016)的做法, 本研究采用运动表象时间与实际执行时间差值的绝对值.运动表象时间为被试进入MRI扫描仪完成表象任务的平均时间(4个动作, 每个动作重复8次), 通过E-Prime记录.实际执行时间为每名被试完成12次(4个动作, 每个动作重复3次)动作的平均时间. ... How is a motor skill learned? Change and invariance at the levels of task success and trajectory control 1 2012 ... 运动技能(motor skill)是指借助于神经、骨骼和肌肉系统来实现在身体活动中所需的各种行为操作, 通常是由多个动作单元构成的复杂系统, 需要在学习过程中通过反复练习逐步形成和发展(Shmuelof et al., 2012).运动技能水平会随着学习进程的推进而逐步提高, 但受技能复杂程度、学习方法等因素的影响, 技能提高的速度会呈现出不同的趋势, 有的运动技能(如短跑等)在学习开始阶段提高迅速, 之后提升速度逐渐减缓; 有的运动技能(如游泳等)在学习开始阶段技能提高比较缓慢, 学习一段时间后技能提高逐渐加快; 而有一些运动技能(如网球等)在学习过程中还会出现技能提高暂时变缓甚至停顿的情况(陈琦, 刘儒德, 2019; 张力为, 毛志雄, 2018).总的来说, 在运动技能学习过程中, 学习者的技能提高速度会表现出较为显著的阶段性的变化特点, 但在此过程中大脑功能发生了怎样的变化?却鲜有研究进行过探索. ... Bilateral representations of touch in the primary somatosensory cortex 1 2016 ... 本研究发现, 运动表象任务在不同时点都激活了类似的额顶认知、运动控制和躯体感觉相关的脑区, 包括额下回、顶下小叶、中央前回、辅助运动区和中央后回等.额顶脑区与高阶认知控制过程相关(Jerde & Curtis, 2013), 中央前回参与运动控制与计划, 辅助运动区还和复杂动作序列的编排有关(Marchand et al., 2013), 而中央后回是参与躯体感觉加工的脑区(Tamè et al., 2016), 三次数据采集都发现了上述脑区的激活, 这可能与太极拳运动表象过程中认知加工和感觉运动加工的整合有关.本研究还发现, 从8周到14周左侧颞上回和左侧楔前叶由表象任务诱发的激活存在显著的增强, 这可能是8周到14周太极拳技能学习过程中, 伴随着技能水平的显著快速提高, 相关脑区激活也显著增强的结果.本研究发现脑区功能的变化和太极拳技能的提高表现出了类似的趋势, 8周到14周既是太极拳技能显著提高的阶段, 也是脑功能显著优化的阶段.而且, 脑和行为的相关分析也发现, 左侧颞上回和左侧楔前叶由表象任务诱发的激活和太极拳的技能水平显著相关, 这进一步说明了太极拳技能学习会对左侧颞上回和左侧楔前叶的功能产生显著的积极影响.值得注意的是, 本研究发现, 从2周到8周, 左侧颞上回的平均信号值虽然出现了暂时的下降, 但是差异并不显著, 推测可能是学习早期, 被试可以利用的已有运动经验较少, 需要不断重复练习单个基本动作, 导致技能的学习出现了一些反复, 表现为这一阶段技能水平变化不大, 因此, 相应的运动表象任务诱发的左侧颞上回的激活也变化不大. ... Increased hippocampus-medial prefrontal cortex resting-state functional connectivity and memory function after Tai Chi Chuan practice in elder adults 1 2016 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ... Congruent activity during action and action observation in motor cortex 1 2007 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise? 1 2013 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Precuneus is a functional core of the default-mode network 1 2014 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... The reorganization of resting-state brain networks associated with motor imagery training in chronic stroke patients 1 2019 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ... Sport expert's motor imagery: Functional imaging of professional motor skills and simple motor skills 2 2009 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ...

... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults 2 2014 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ...

... 太极拳起源于中国古代道教文化, 是需要上、下肢和躯干协调配合的复杂运动技能.太极拳运动过程中需要身体、认知和冥想等共同参与.近些年的研究发现, 与新手相比, 长期练习太极拳的老年人在海马和梭状回区域的局部一致性(ReHo)更高(Yue et al., 2020); 在额顶控制网络的低频振幅率(fALFF)更低(Wei et al., 2014); 在完成n-back工作记忆任务时, 额上回等脑区的激活更低(Port et al., 2018).但上述研究呈现的都是太极拳长期学习引起的脑功能变化, 对太极拳技能学习早期大脑功能的动态变化尚不清楚. ... Further validation and development of the movement imagery questionnaire 1 2012 ... 采用Williams等人(2012)修订的运动表象问卷(Movement Imagery Questionnaire-3, MIQ-3)对被试的运动表象能力进行评估, 该问卷具有良好的信效度.问卷共包含12道题, 要求被试对所描述的动作进行动觉或视觉表象, 随后要求被试对表象动作的难易程度进行7点评分, 1为“很难感受到或看到”, 7为“很容易感受到或看到”, 分别评估动觉(问卷1~4题)和视觉(问卷5~12题)表象能力.由于本研究重点关注动觉表象, 参照前人研究对被试的筛选方法(白学军 等, 2016; 沈诚 等, 2016), 以动觉表象(问卷1~4题)平均分超过4为入组标准, 本研究被试全部符合要求. ... Task-switching performance improvements after Tai Chi Chuan training are associated with greater prefrontal activation in older adults 1 2018 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Impact of early- commenced and continued sports training on the precuneus in older athletes 1 2021 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... The influence of motor expertise on the brain activity of motor task performance: A meta-analysis of functional magnetic resonance imaging studies 1 2015 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... Design and effect evaluation of the performance of specific imagery training program: A case study of free throw 1 2020 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ... 专项表象训练方案设计与效果测评——以篮球罚球训练为例 1 2020 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ... Regular Tai Chi practice is associated with improved memory as well as structural and functional alterations of the hippocampus in the elderly 1 2020 ... 太极拳起源于中国古代道教文化, 是需要上、下肢和躯干协调配合的复杂运动技能.太极拳运动过程中需要身体、认知和冥想等共同参与.近些年的研究发现, 与新手相比, 长期练习太极拳的老年人在海马和梭状回区域的局部一致性(ReHo)更高(Yue et al., 2020); 在额顶控制网络的低频振幅率(fALFF)更低(Wei et al., 2014); 在完成n-back工作记忆任务时, 额上回等脑区的激活更低(Port et al., 2018).但上述研究呈现的都是太极拳长期学习引起的脑功能变化, 对太极拳技能学习早期大脑功能的动态变化尚不清楚. ... The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot 2 2017 ... 使用G-power 3.1 (Faul et al., 2009)估计研究中实验组被试所需的样本量, 采用先验(prior)分析方法, 参考张兰兰等人(2017)研究中具有交互作用脑区的效应量, 本研究将效应量(effect size)设置为0.32, Power值(1 − β)设置为0.80, 组数设置为1, 测量数设置为3, α值设置为0.05, 计算出实验组最小样本量为18人. ...

... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... 运动技能水平与躯体感觉输入对运动表象的影响 2 2017 ... 使用G-power 3.1 (Faul et al., 2009)估计研究中实验组被试所需的样本量, 采用先验(prior)分析方法, 参考张兰兰等人(2017)研究中具有交互作用脑区的效应量, 本研究将效应量(effect size)设置为0.32, Power值(1 − β)设置为0.80, 组数设置为1, 测量数设置为3, α值设置为0.05, 计算出实验组最小样本量为18人. ...

... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Expertise-level-dependent functionally plastic changes during motor imagery in basketball players 2 2018 ... 磁共振成像(magnetic resonance imaging, MRI)是当前进行大脑结构和功能研究最为先进的技术, 但采集的过程需要头部固定、采用仰卧姿势, 因此无法在运动技能实际执行时采集脑数据.为了建立运动技能与脑的关联, 较多学者采用运动表象任务替代技能实际执行(Ross et al., 2003; Wei & Luo, 2009; Zhang et al., 2018).运动表象(motor imagery)是指在无外部动作输出或者肌肉活动的情况下对简单或复杂动作进行心理模拟的过程(Feltz & Landers, 1983), 包括视觉表象和动觉表象(Hanakawa et al., 2003).人们发现运动表象和运动实际执行(motor execution)存在着关联, 心理计时任务的研究发现两者耗费的时间通常比较接近(Guillot et al., 2012); 肌电(electromyogram, EMG)等外周生理测量技术的研究发现, 两者存在着生理水平上的功能一致性(Collet et al., 2011); 脑成像的研究也发现两者之间的神经基础具有重叠性(Guillot et al., 2008), 从而推测运动表象和运动实际执行之间具有“功能等同性” (functional equivalence) (Lafleur et al., 2002).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ...

... ).由于运动表象质量会受到运动技能水平的影响(Zhang et al., 2018), 因此认为对运动技能学习引发的大脑功能动态变化的观测, 能够用运动表象任务替代运动的实际执行(Holmes & Collins, 2001). ... 2 2018 ... 运动技能(motor skill)是指借助于神经、骨骼和肌肉系统来实现在身体活动中所需的各种行为操作, 通常是由多个动作单元构成的复杂系统, 需要在学习过程中通过反复练习逐步形成和发展(Shmuelof et al., 2012).运动技能水平会随着学习进程的推进而逐步提高, 但受技能复杂程度、学习方法等因素的影响, 技能提高的速度会呈现出不同的趋势, 有的运动技能(如短跑等)在学习开始阶段提高迅速, 之后提升速度逐渐减缓; 有的运动技能(如游泳等)在学习开始阶段技能提高比较缓慢, 学习一段时间后技能提高逐渐加快; 而有一些运动技能(如网球等)在学习过程中还会出现技能提高暂时变缓甚至停顿的情况(陈琦, 刘儒德, 2019; 张力为, 毛志雄, 2018).总的来说, 在运动技能学习过程中, 学习者的技能提高速度会表现出较为显著的阶段性的变化特点, 但在此过程中大脑功能发生了怎样的变化?却鲜有研究进行过探索. ...

... 本研究发现, 在太极拳技能学习的早期, 技能提高的速度并不是呈线性上升的, 而是显示出了明显的阶段性, 具体表现为从2周到8周技能水平变化不大, 而从8周到14周技能水平显著提高, 表现出先慢后快的变化特点.陈琦和刘儒德(2019)以及张力为和毛志雄(2018)认为, 技能学习过程中技能水平的提高呈现先慢后快的特点可能是因为个体新学习的动作技能和过去已有的动作经验关联不大, 可以利用的动作结构比较有限, 需要在一些基本动作上投入较多的精力, 因此刚开始学习时技能变化速度较为缓慢, 经过一段时间的学习, 一旦掌握了基本的动作结构, 技能水平的提高速度就会显著加快.本研究中的太极拳是一项包含了一系列手脚协同且精细、连贯的动作组成的复杂运动技能, 具有节奏缓慢、强度适中及身心合一的特点.在刚开始单个基本动作的学习阶段, 学习者可以利用的运动经验较少, 动作的协调和控制较差, 需要不断重复练习建立新的动作联结, 因此这一阶段技能水平变化不大.待掌握了单个基本动作后, 将这些单个动作组合成完整动作结构就相对容易, 学习者只需要思考动作之间的前后顺序和连接动作, 相对前一个阶段学习难度有所下降, 动作的协调性越来越好, 因此这一阶段技能提升速度会加快. ... 2 2018 ... 运动技能(motor skill)是指借助于神经、骨骼和肌肉系统来实现在身体活动中所需的各种行为操作, 通常是由多个动作单元构成的复杂系统, 需要在学习过程中通过反复练习逐步形成和发展(Shmuelof et al., 2012).运动技能水平会随着学习进程的推进而逐步提高, 但受技能复杂程度、学习方法等因素的影响, 技能提高的速度会呈现出不同的趋势, 有的运动技能(如短跑等)在学习开始阶段提高迅速, 之后提升速度逐渐减缓; 有的运动技能(如游泳等)在学习开始阶段技能提高比较缓慢, 学习一段时间后技能提高逐渐加快; 而有一些运动技能(如网球等)在学习过程中还会出现技能提高暂时变缓甚至停顿的情况(陈琦, 刘儒德, 2019; 张力为, 毛志雄, 2018).总的来说, 在运动技能学习过程中, 学习者的技能提高速度会表现出较为显著的阶段性的变化特点, 但在此过程中大脑功能发生了怎样的变化?却鲜有研究进行过探索. ...

... 本研究发现, 在太极拳技能学习的早期, 技能提高的速度并不是呈线性上升的, 而是显示出了明显的阶段性, 具体表现为从2周到8周技能水平变化不大, 而从8周到14周技能水平显著提高, 表现出先慢后快的变化特点.陈琦和刘儒德(2019)以及张力为和毛志雄(2018)认为, 技能学习过程中技能水平的提高呈现先慢后快的特点可能是因为个体新学习的动作技能和过去已有的动作经验关联不大, 可以利用的动作结构比较有限, 需要在一些基本动作上投入较多的精力, 因此刚开始学习时技能变化速度较为缓慢, 经过一段时间的学习, 一旦掌握了基本的动作结构, 技能水平的提高速度就会显著加快.本研究中的太极拳是一项包含了一系列手脚协同且精细、连贯的动作组成的复杂运动技能, 具有节奏缓慢、强度适中及身心合一的特点.在刚开始单个基本动作的学习阶段, 学习者可以利用的运动经验较少, 动作的协调和控制较差, 需要不断重复练习建立新的动作联结, 因此这一阶段技能水平变化不大.待掌握了单个基本动作后, 将这些单个动作组合成完整动作结构就相对容易, 学习者只需要思考动作之间的前后顺序和连接动作, 相对前一个阶段学习难度有所下降, 动作的协调性越来越好, 因此这一阶段技能提升速度会加快. ... Brain plasticity of table tennis athletes based on dynamic amplitude of low-frequency fluctuation method 1 2020 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... 基于动态低频振荡振幅方法的乒乓球运动员脑可塑性变化 1 2020 ... 大脑具有可塑性, 大脑的可塑性是指人脑具有的根据行为、学习等内外环境的变化而改变其结构和功能的能力, 是个体心理和行为适应性变化的物质基础(Kolb & Gibb, 2014; Sale et al., 2014).近年来的脑成像研究发现, 运动技能学习可以塑造大脑静息态和任务态功能的变化(Yang, 2015; 娄虎, 刘萍, 2020; 任占兵 等, 2019).然而既往研究多采用专家−新手的横断面设计, 探索某一运动技能的长期学习经验对大脑功能的影响, 发现不同项目的运动专家相比于新手, 具有特定的脑功能优势(Abreu et al., 2012; Bishop et al., 2013; Tomasino et al., 2013; Wei et al., 2014).例如, 跳水运动员在表象跳水动作时海马旁回的激活更高(Wei & Luo, 2009); 羽毛球运动员左侧顶下小叶的静息态自发神经活动更低(Di et al., 2012); 乒乓球运动员在完成go/no-go视觉空间任务时, 额中回、眶额区会表现出更低的激活(Guo et al., 2017), 但左侧小脑和左侧颞中回的自发神经活动更高(张牧 等, 2020).Wu等人(2018)认为脑区激活的降低可能与神经加工效率的提高有关, 而脑区激活的增强可能与专业化程度更高的神经加工能力有关, 两者都伴随着相同或更优的行为表现.但此类研究设计只能了解长期学习经验引起的最后变化, 无法了解学习过程中大脑功能的变化情况是否也如技能提高速度一样, 表现出阶段性特征?特别是运动技能学习早期大脑功能发生了怎样的变化无法得知.运动技能学习的早期阶段是观察大脑功能动态变化非常好的窗口期, 对此阶段进行观察比了解长期运动技能学习对脑功能的影响更有价值, 因为对于大多数普通人而言, 复杂运动技能的学习往往无法达到运动专家的水平.对运动技能学习早期大脑功能动态变化过程的考察, 能够帮助人们更好地理解运动与脑可塑性的关系, 一方面可以完善运动技能学习与控制的相关理论, 另一方面也能够为运动健脑提供更加坚实的实证支撑. ... The optimization in sensorimotor system in dancers: Evidences from resting state fMRI 1 2017 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... 舞蹈运动员大脑感知运动系统的功能特征——一项静息态功能磁共振研究 1 2017 ... 颞上回被认为是镜像神经系统的一部分(Grèzes et al., 2004), 与动作的观察、执行、表象以及动作的理解有关(Fogassi et al., 2005; Tkach et al., 2007), 参与了序列动作的感知加工过程(Bachrach et al., 2016); 楔前叶属于默认网络的一部分(Utevsky et al., 2014), 与正念冥想以及高水平的身体表征相关(Ives- Deliperi et al., 2011), 在动作执行和动作表象过程中负责协调注意在空间目标之间的转换(Oshio et al., 2010).已有研究也报告了运动技能学习或运动训练引发的颞上回和楔前叶脑区功能或结构的变化, 如赵琦等人(2017)的研究发现专业舞蹈运动员颞上回的局部一致性显著高于没有舞蹈经验的对照组; 张兰兰等人(2017)发现和新手相比, 篮球运动员表象篮球投篮动作时楔前叶的激活显著较强; Yamashita等人(2021)的研究结果显示, 运动员群体楔前叶的灰质体积显著大于对照组, 并且还与其参与运动训练的时长显著相关; Cui等人(2019)的研究也发现8周的太极拳锻炼显著增加了大学生颞上回、楔前叶等脑区的灰质体积.本研究中, 经过14周的系统学习, 特别是从8周到14周, 随着太极拳技能水平的显著提升, 个体完成太极拳动作越来越熟练, 完成动作的准确性也明显提高, 对涉及到与太极拳动作有关的感知、表象以及内部表征过程变得也越来越好, 而上述心理与行为表现的积极变化可能与颞上回、楔前叶神经加工能力的增强紧密相关, 从而表现出了相关脑区激活的增强, 上述结果为早期太极拳技能学习有助于优化与序列动作学习有关的脑区功能提供了证据. ... Experimental study of internal and external imagery training on table tennis skill learning 1 2011 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ... 内-外表象训练影响乒乓球技能学习的教学实验 1 2011 ... 实验组被试接受系统的太极拳技能培养, 由一名获得国家武术二级运动员证书且有20多年太极拳教学经验的教师全程指导和监督.学习安排为:每次90分钟、每周5次, 其中包括3次教学指导课和2次自主练习课, 持续时间为14周.每次包括10分钟热身运动, 60分钟太极拳技能训练, 10分钟呼吸训练以及10分钟放松训练.训练内容以24式杨氏太极拳为主, 也学习8式、16式太极拳.在实验开始前, 与实验组和对照组被试签订了协议, 明确要求实验组被试在实验期间不进行其他运动技能的学习和有规律的锻炼(每周3次、每次30分钟以上、持续至少3个月) (Tao et al., 2016).对照组被试保持正常的学习和生活, 也不进行任何运动技能的学习和有规律的锻炼.研究表明运动表象训练能够提高参与者的运动技能水平和静息态脑功能(Chiacchiero et al., 2015; Wang et al., 2019; 游茂林 等, 2020; 钟霞, 柯敏, 2011), 为了避免表象训练对太极拳运动技能提升和被试的脑功能产生影响, 要求两组被试在实验期间也不进行太极拳动作的表象训练, 并在每次数据采集前口头询问被试是否遵循了上述要求. ...


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有