致密砂砾岩储层孔隙结构对比及差异机制研究 您所在的位置:网站首页 粒间孔隙填充高岭石图 致密砂砾岩储层孔隙结构对比及差异机制研究

致密砂砾岩储层孔隙结构对比及差异机制研究

2024-07-10 05:09| 来源: 网络整理| 查看: 265

摘要

致密储层孔隙结构研究对于致密油气的勘探和开发具有重要意义,也是当前致密储层研究的热点。本文以准噶尔盆地三叠系百口泉组致密砾岩和鄂尔多斯盆地三叠系延长组致密砂岩为研究对象,重点开展二维大面积背散射扫描电镜成像技术(Maps)、高压压汞、微米CT和聚焦离子束扫描电镜技术(FIB-SEM)等分析测试,采用定性和定量相结合的方法对致密砾岩和致密砂岩孔隙结构特征进行表征和对比,并进一步揭示了两者的成因机制差异。研究结果表明:百口泉组致密砾岩较延长组致密砂岩储层物性好,前者孔隙度和渗透率平均为9.29%和1.65×10-3 μm2,后者孔隙度和渗透率平均为8.85%和0.39×10-3 μm2;百口泉组致密砾岩较延长组致密砂岩孔喉尺寸偏大、孔隙连通性较差及孔隙结构更为复杂,前者孔喉半径主要分布在0~200 nm和2~10 μm范围内,平均连通率60.63%,平均孔喉配位数3.0446,后者孔喉半径主要分布于0~4 μm范围内,平均连通率73.60%,平均孔喉配位数2.7832;差异化沉积作用和成岩作用是导致百口泉组致密砾岩和延长组致密砂岩孔隙结构特征差异的根本原因。

Abstract

The research on pore structure of tight reservoirs is of great significance for the exploration and development of tight oil and gas, and it is also a hotspot in the research on tight reservoirs. Taking the tight conglomerates of the Triassic Baikouquan Formation in the Junggar basin and tight sandstones of the Triassic Yanchang Formation in the Ordos basin as examples, the pore structure characteristics and comparisons of tight conglomerates and tight sandstones are studied qualitatively and quantitatively, and the differences of genetic mechanism between them are further explored using two-dimensional large area backscatter scanning electron microscopy (maps), high-pressure mercury intrusion porosimetry (HMIP), micro CT and focused ion beam scanning electron microscopy (FIB-SEM). Results show that the physical properties of tight conglomerate in the Baikouquan Formation are better than those of tight sandstone in the Yanchang Formation, and the average porosity and permeability of the former is 9.29% and 1.65×10-3 μm2, while that of the latter is 8.85% and 0.39×10-3 μm2. The pore throat distribution of tight conglomerates in the Baikouquan Formation and tight sandstone in the Yanchang Formation is characterized by multi-scale continuous distribution. The pore structure of tight conglomerates in the Baikouquan Formation is characterized by pore throat radius mainly in the range of 0~200 nm and 2~10 μm, average connectivity of 60.63% and average pore-throat coordination number of 3.0446. The pore structure of tight sandstones in the Yanchang Formation is characterized by pore throat radius mainly in the range of 0~4 μm, average connectivity of 73.60% and average pore-throat coordination number of 2.7832. Compared with the tight sandstones of the Yanchang Formation, the tight conglomerates of the Baikouquan Formation have larger pore throat size, poor pore throat sorting, poor pore connectivity and more complex pore structure. Differential sedimentation and diagenesis are the main reasons for the pore structure differences between tight conglomerates of the Baikouquan Formation and tight sandstones of the Yanchang Formation.

关键词

孔隙结构 ; 成岩作用 ; 对比研究 ; 致密砂砾岩 ; 百口泉组 ; 延长组

Keywords

pore structure ; diagenesis ; comparative study ; tight sandstone or conglomerate ; Baikouquan Formation ; Yanchang Formation

21世纪以来,非常规油气快速发展,显示出巨大的资源潜力,逐渐成为油气勘探开发的重要领域(Yang Zhi et al., 2019)。致密油气作为非常规油气的重要组成,资源丰富,地质资源量达74×108~80×108 t,技术可采资源量为13×108~14×108 t(Zhu Xiaomin et al., 2018),广泛分布于四川盆地、鄂尔多斯盆地、准噶尔盆地、松辽盆地和渤海湾盆地等(Qiu Zhen et al., 2020)。不同于传统常规油气资源,致密油气具有大面积连续分布的特征,主要赋存于孔隙度小于10%、渗透率小于0.1×10-3 μm2的致密储层中(Zhu Xiaomin et al., 2018)。致密储层孔喉尺寸小、孔隙结构复杂,严重制约其流体储集和渗流能力。因此,明确致密储层孔隙结构特征,对于致密油气进一步勘探和开发具有重要意义,也是当前致密储层研究的热点。

基于前人提出的致密储层孔隙尺寸划分方案(Martin et al., 1997; Liu Na et al., 2014; Zhu Rukai et al., 2016),本文将致密储层孔隙划分为大孔(>20 μm)、中孔(10~20 μm)、小孔(2~10 μm)、微米孔(1~2 μm)、亚微米孔(0.1~1 μm)、纳米孔(<0.1 μm)。致密储层孔隙以微纳米孔为主(Nelson, 2009),孔径一般为40~900nm(Wang He et al., 2019),孔径下限为20~50nm(Sun Longde et al., 2019)。因此,常规分析测试技术已经不适用于致密储层孔隙结构表征,而场发射扫描电镜、高压压汞、气体吸附、核磁共振和微纳米CT等高分辨率表征技术逐渐得到推广和应用(Anovitz et al.,2015; Guo Qiyang et al., 2019; Zhang Fan et al., 2019)。鉴于上述单一方法各有优缺点,难以实现孔隙结构全尺度表征,前人通常联合多种技术手段对致密储层孔隙结构进行表征,例如高压压汞与气体吸附技术结合(Tian Hua et al., 2012; Li Zhiqing et al., 2017)、高压压汞与核磁共振技术结合(Sun Xiaolong et al., 2017; Kong Xingxing et al., 2020)以及高压压汞和微米CT扫描技术结合(Wang Qianyou et al., 2019)等。国内外学者针对不同地区、不同时代或不同类型的致密储层微观孔隙结构纷纷开展研究并取得了丰富的成果(Nooruddin et al., 2014; Xiao Dianshi et al., 2016; Li Junjian et al., 2018; Zhu Peng et al., 2020)。然而,不同致密储层之间的孔隙结构对比研究较为缺乏,有待深化。本文以三叠系鄂尔多斯盆地延长组和准噶尔盆地百口泉组为研究对象,结合氩离子抛光—场发射扫描电镜(FE-SEM)、高压压汞、核磁共振和微纳米CT扫描等技术,开展致密砂砾岩储层孔隙结构特征对比研究,并进一步探讨两者孔隙结构差异机制,为下一步致密油气勘探和甜点预测提供理论依据。

1 地质背景

准噶尔盆地位于中亚增生造山带的中南部,是晚古生代至中、新生代多旋回叠合盆地(Huang Dingjie et al., 2015)(图1)。玛湖凹陷位于准噶尔盆地西北缘,是油气勘探重点区带。下三叠统百口泉组主要发育近源粗粒扇三角洲沉积体系,沉积物岩性以灰绿色砂质细砾岩、细砾岩、中砾岩、含砾粗砂岩为主(Qu Jianhua et al., 2017)。砾岩分选中等—较差,颗粒直径在2~40mm之间变化,磨圆以次棱角状—次圆状、次圆状为主,结构成熟度和成分成熟度均较低(Cao Yingchang et al., 2019)。百口泉组总厚度为130~240m,自下而上划分为百一段(T1b1)、百二段(T2b2)和百三段(T3b3),其中百一段和百二段为主要储集层(Xiao Meng et al., 2019)。百口泉组埋藏深度普遍大于3000m(Xiong Jian et al., 2018),表现为低孔低渗特点,孔隙度主要分布在2.5%~21.2%之间,平均7.94%,渗透率主要分布在0.01×10-3~982×10-3 μm2之间,平均为5.6×10-3 μm2(Cao Yingchang et al., 2019)。

鄂尔多斯盆地位于华北地台西部,是在前寒武系结晶基底上发展起来的大型多旋回克拉通盆地(图1),经历了中新元古代坳拉谷、早古生代浅海台地、晚古生代滨海平原、中生代内陆盆地和新生代盆缘断陷等多个构造演化阶段(Liu Dengke et al., 2019)。上三叠统延长组记录了湖盆形成、发展和消亡的全过程,为一套以河流—湖泊相为主的砂泥岩沉积。延长组自下而上划分为长10段—长1段共10个油层段,其中长2段、长6段和长8段为主要含油层段。延长组主要发育浅灰色细粒岩屑长石砂岩和长石岩屑砂岩,碎屑颗粒直径主要分布在0.06~0.25mm之间(Li Pan et al., 2018),颗粒分选中等—好,次棱角状磨圆(Zhang Xi et al., 2017)。储层致密,孔隙度一般分布在6%~14%之间,平均为10.1%,渗透率一般分布在0.01×10-3~1×10-3 μm2之间(Li Chaozheng et al., 2016)。

2 样品与测试

实验样品分别选自准噶尔盆地玛湖凹陷百口泉组百二段和鄂尔多斯盆地延长组长4+5、长7段。百口泉组样品为扇三角洲相中砾岩和含细砾中砾岩,延长组样品为河流相砂岩。

二维大面积背散射扫描电镜成像技术(Maps)是将直径为5mm的柱塞岩样进行表面离子抛光和镀膜,然后利用Helios NanoLab660仪器对样品进行小视域连续扫描,获取大量高分辨率小图像,然后将小图像组合拼接为二维大面积背散射图像,分辨率可达250nm(Zhang Tongyao et al., 2020)。该技术较好解决了视域大小与分辨率高低之间的矛盾,能够实现微米—纳米多尺度孔隙结构精细表征。

高压压汞(HMIP)采用AutoPoreⅣ 9500型全自动压汞仪,该仪器能够提供的最大进汞压力为413MPa(Yang Xiao et al., 2016),本次研究选取汞表面张力为480N/m,接触角为140°。将切割好的1cm3立方体小块样品装入封闭的膨胀计中,抽真空后进行注汞。通过测量样品在不同毛细管压力下的进汞饱和度,绘制毛细管压力曲线;然后利用Washburn方程将毛管压力转换为孔径,从而得到孔喉半径分布曲线;此外,根据Young-Dupré方程提出的界面张力与比表面积之间的关系,计算不同孔径对应的比表面积(Ma Haiyang et al., 2019)。高压压汞为破坏性实验,注汞压力过高时会导致岩样孔隙结构变形或压缩,因此该实验主要适用于宏孔(微米级和亚微米级)测量(Yu Yuxi et al., 2020),有效孔径测量范围为3nm~400 μm(Li Zhiqing et al., 2017)。高压压汞的可靠测试精度为3nm(Ning Chuanxiang et al., 2017)。

微米CT(Micro CT)是从微米尺度研究二维及三维孔隙结构特征的X射线无损探测技术。微米CT扫描采用MicroXCT-400型CT扫描仪对直径为5mm柱体样品进行360°扫描(砂岩扫描精度为1 μm,砾岩扫描精度为5 μm),获取一系列二维图像,在此基础上利用Avizo软件对二维图像进行二值化分割处理并重构得到三维孔隙结构模型(三维数字岩芯)(Xiong Jian et al., 2018),然后运用数理统计方法定量提取孔隙度、渗透率、形状因子和连通率等孔隙结构参数(Bai Bin et al., 2013)。

图1 准噶尔盆地和鄂尔多斯盆地在中国的地理位置(a)、准噶尔盆地构造单元划分(b) 和鄂尔多斯盆地构造单元划分(c)(据Qu Yiqian et al., 2020; Xiao Meng et al., 2020修改)

Fig.1 Geographical location of Junggar basin and Ordos basin in China (a), division of structural units in Junggar basin (b) and division of structural units in Ordos basin (c) (modified after Qu Yiqian et al., 2020; Xiao Meng et al., 2020)

聚焦离子束扫描电镜(FIB-SEM)是由聚焦离子束与电子束集成的双束系统,离子束用于对切割和剥蚀样品,电子束用于扫描成像,两者结合通过对观测样品边剥蚀边成像的方式获取样品内部的真实孔隙结构信息。FIB-SEM的扫描精度可达1~3nm(Zhang Tianfu et al., 2016)。

3 储层特征 3.1 矿物学特征

准噶尔盆地玛湖凹陷百口泉组致密储层发育含砾粗砂岩、砂质细砾岩、细砾岩和中砾岩等多种岩性类型,其中细砾岩为主要岩性。砾石成分以凝灰岩和花岗岩为主,砂质成分以花岗岩、石英、凝灰岩和长石为主,杂基主要为黏土矿物。X衍射结果表明(表1),百口泉组致密砾岩样品主要含有石英(48.1%~63.7%,平均值54.37%)、斜长石(16.3%~35.5%,平均值24.37%)和黏土矿物(7.6%~27.9%,平均值17.78%),其次为钾长石(0.5%~6.6%,平均值2.36%)和方解石(0.3%~2.9%,平均值0.82%),白云石、菱铁矿和黄铁矿含量极少,仅在个别样品中发育。黏土矿物以绿泥石(13%~61%,平均值37.75%)和伊蒙混层(8%~54%,平均值26.75%)为主,其次为伊利石(10%~35%,平均值20.75%)和高岭石(5%~23%,平均值14.75%)。

鄂尔多斯盆地延长组致密储层主要发育岩屑长石砂岩、长石岩屑砂岩和长石砂岩等,粒度以细砂和粉砂为主。储层填隙物主要为绿泥石、伊利石和高岭石等黏土矿物以及方解石等碳酸盐。X衍射结果表明(表1),百口泉组致密砾岩样品主要含有石英(26.0%~62.1%,平均值43.31%)、斜长石(12.9%~45.0%,平均值29.92%)、钾长石(6.1%~21.2%,平均值10.10%)和黏土矿物(7.8%~16.7%,平均值10.67%),其次为方解石(0.5%~15.2%,平均值2.82%)和白云石(0.8%~9.3%,平均值2.59%),菱铁矿含量极少,未见黄铁矿。黏土矿物以绿泥石(17%~77%,平均值44.60%)和伊利石(4%~58%,平均值28.93%)为主,其次为高岭石(5%~24%,平均值15%)和伊蒙混层(2%~19%,平均值11.47%)。

表1 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层全岩及黏土矿物组成

Table1 The compositions of whole rock and clay minerals of tight reservoirs in Baikouquan Formation of Junggar basin and Yanchang Formation of Ordos basin

3.2 物性特征

结合文献调研(Dan Weidong et al., 2011; Li Chaozheng et al., 2016; Sima Liqiang et al., 2016; Kang Xun et al.,2017; Zhang Hao et al.,2017; Fu Yu et al., 2020; Qu Yiqian et al., 2020; Wang Fuyong et al., 2020; Zhang Quanpei et al., 2020)和实验测试数据,准噶尔盆地玛湖凹陷百口泉组致密砂砾岩孔隙度整体分布在5.3%~15.0%,平均值为9.29%,渗透率整体分布在0.02×10-3~16.4×10-3 μm2,平均值为1.65×10-3 μm2(图2a、b);鄂尔多斯盆地延长组致密砂岩孔隙度整体分布在1.2%~18.6%,平均值为8.85%,渗透率整体分布在0.001×10-3~3.48×10-3 μm2,平均值为0.39×10-3 μm2(图2a、b)。从分布频率上看,百口泉组致密砂砾岩孔隙度主要分布在4%~12%,渗透率集中分布在0.1×10-3~10×10-3 μm2;延长组致密砂岩孔隙度也主要分布在4%~12%,而渗透率主要分布在0.01×10-3~1×10-3 μm2。相比之下,百口泉组致密砂砾岩具有较高的孔隙度和渗透率。此外,根据孔隙图-渗透率交汇图(图2c、d),百口泉组致密砂砾岩的孔渗关系较差(R2=0.09),延长组致密砂岩的孔渗关系较好(R2=0.53),表明百口泉组致密砂砾岩的孔隙结构更为复杂,非均质性更差。

图2 准噶尔盆地百口泉组和鄂尔多斯盆地延长组物性分布特征

Fig.2 Physical properties of Baikouquan Formation in Junggar basin and Yanchang Formation in Ordos basin

(a)—孔隙度分布特征;(b)—渗透率分布特征;(c)—百口泉组孔隙度-渗透率交会图;(d)—延长组孔隙度-渗透率交会图

(a)—Distribution characteristics of porosity; (b)—distribution characteristics of permeability; (c)—porosity-permeability cross plot of Baikouquan Formation; (d)—porosity-permeability cross plot of Yanchang Formation

4 孔隙结构对比 4.1 孔隙类型

Maps成像分析实验表明准噶尔盆地玛湖凹陷百口泉组致密砾岩储层和鄂尔多斯盆地延长组致密砂岩储层的孔隙类型均以残余粒间孔隙、溶蚀孔隙和晶间孔隙为主,见少量微裂缝。残余粒间孔隙是致密砂砾岩储层中重要的孔隙类型,为原生沉积孔隙经过埋藏压实等成岩作用后保存下来的孔隙,发育于石英、长石和岩屑等骨架碎屑颗粒之间,常表现为边缘平直的三角形或多边形形态,孔隙半径分布范围较广,为10~75 μm(图3a、4a)。溶蚀孔隙主要表现为石英、长石和岩屑等碎屑颗粒内部及边缘溶蚀形成的粒内溶孔和粒间溶孔(Cao Yingchang et al., 2019)。粒间溶孔多具有锯齿状或港湾状边缘,形状不规则,孔隙半径主要分布在5~30 μm。粒内溶孔以长石粒内溶孔为主,孔隙形状不规则,孔隙呈不定向排列。百口泉组致密砾岩样品中长石粒内溶蚀孔隙半径主要分布在0.5~20 μm(图3c),延长组致密砂岩样品中长石粒内溶蚀孔隙半径主要分布在1~10 μm(图4c)。晶间孔隙是指发育在高岭石、伊利石和绿泥石等黏土矿物集合体内部的孔隙,呈良好定向排列。百口泉组致密砾岩样品中高岭石晶间孔隙和伊利石晶间孔隙发育良好,孔隙半径为0.5~10 μm(图3d)。延长组致密砂岩样品中蒙脱石晶间孔隙和伊利石晶间孔隙发育,孔隙半径主要分布在0.1~5 μm(图4b)。微裂缝不甚发育,主要表现为石英颗粒粒间缝和长石颗粒粒内缝,百口泉组致密砾岩样品中微裂缝开度为5~50 μm(图3b),延长组致密砂岩样品中微裂缝开度为0.1~10 μm(图4d)。对比分析表明,准噶尔盆地玛湖凹陷百口泉组致密砾岩储层相对发育黏土矿物晶间孔隙,而鄂尔多斯盆地延长组致密砂岩储层相对发育长石粒内溶蚀孔隙。

4.2 孔喉大小及分布 4.2.1 高压压汞测试结果分析

高压压汞实验主要反映致密砂砾岩储层孔喉连通关系和孔喉分布特征等信息。图5a、b分别为鄂尔多斯盆地延长组致密砂岩样品和准噶尔盆地百口泉组致密砾岩样品的进汞曲线。数据分析表明,准噶尔盆地百口泉组致密砾岩样品的进汞量为55.94%~83.01%;排驱压力为0.12~1.17MPa时,对应最大孔喉半径约为1.0~10.0 μm,平均为3.1 μm(表2)。鄂尔多斯盆地延长组致密砂岩样品的进汞量为85.91%~93.77%;排驱压力为0.29~1.84MPa,对应最大孔喉半径约为0.4~2.5 μm,平均为1.3 μm(表2)。准噶尔盆地百口泉组致密砾岩与鄂尔多斯盆地延长组致密砂岩相比,具有排驱压力小和进汞量大的特点,反映前者具有更大的孔喉半径和较差的孔喉连通性。此外,从毛管压力曲线形态上看,百口泉组致密砾岩的压汞曲线中间呈“斜直状”,反映孔喉分选较差;延长组致密砂岩的压汞曲线中间平台段长,孔喉分选较好。

图3 准噶尔盆地百口泉组M139-25致密砾岩样品Maps成像分析结果

Fig.3 Map imaging analysis of M139-25tight conglomerate samples from Baikouquan Formation in Junggar basin

(a)—样品大视域图像; (b)—高岭石晶间孔隙; (c)—长石粒内溶孔; (d)—微裂缝,见石英粒间缝和长石粒内缝

(a)—Large view image of sample; (b)—intergranular pores of kaolinite; (c)—dissolution pores in feldspar grains; (d)—microfractures, such as intergranular quartz and intergranular feldspar fractures

根据孔喉半径分布特征曲线(图5c、d),准噶尔盆地百口泉组致密砾岩和鄂尔多斯盆地延长组致密砂岩的孔喉分布多数表现为“双峰”特征,其中百口泉组致密砾岩孔喉分布主要在0~0.13 μm和0.6~4.0 μm之间;延长组致密砂岩孔喉分布主要在0~0.16 μm和0.4~2.0 μm范围。对比发现,百口泉组致密砾岩主要发育微米级和亚微米级孔喉,平均占比分别约为70.6%和24.8%;而延长组致密砂岩相对发育亚微米级和纳米级孔喉,微米级孔喉较不发育,平均占比分别约为56.8%、35.2%和8%。

4.2.2 微米CT测试结果分析

基于微米CT测试结果,分析准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层的孔隙和喉道的分布特征(表3、图6)。微米CT结果表明,准噶尔盆地百口泉组致密砂砾岩和延长组致密砂岩样品的孔喉均呈现多尺度连续分布的特征。从孔隙数量分布上看,百口泉组致密砂砾岩样品在孔隙半径2~10 μm区间的孔隙数量最多,占比达74.19%;延长组致密砂岩样品中孔隙数量在0~4 μm半径范围内的比例高达90.88%。从孔隙体积分布上看,百口泉组致密砂砾岩样品孔隙体积为2.11×107~96.17×107 nm3(平均值为3.42×108 nm3),不同尺度的孔隙分布相对均匀,以半径为8~10 μm和半径>20 μm的孔隙体积占比相对较高,分别为17.88%和17.97%;延长组致密砂岩样品孔隙体积为1.46×107~7.63×107 nm3(平均值为4.36×10 7 nm3),孔隙体积主要集中分布在0~8 μm孔隙半径范围内,占比为74.02%,其中半径为2~4 μm孔隙体积占比达30.78%。从喉道数量分布上看,百口泉组致密砂砾岩样品喉道半径在0~10 μm区间的喉道数量比例达90.49%;延长组致密砂岩样品喉道半径在0~4 μm区间的喉道数量比例达93.28%。从喉道体积分布上看,百口泉组致密砂砾岩样品喉道体积为0.37×107~41.36×107 nm3(平均值为1.45×108 nm3),主要集中分布在0~10 μm喉道半径范围内,占比达74.88%,其中半径在2~6 μm区间喉道体积比例高达38.66%;延长组致密砂岩样品喉道体积为0.64×107~4.04×107 nm3(平均值为2.11×107 nm3),其中喉道半径在0~6 μm区间的喉道体积比例为84.03%。

图4 鄂尔多斯盆地延长组W96-28致密砂岩样品Maps成像分析结果

Fig.4 Map imaging analysis of W96-28tight sandstone samples from Baikouquan Formation in Junggar basin

(a)—样品大视域图像; (b)—黏土矿物晶间孔隙,见伊利石晶间孔和蒙脱石晶间孔; (c)—长石粒内溶孔; (d)—石英粒间缝

(a)—Large view image of sample; (b)—the intergranular pores of clay minerals including illite and montmorillonite; (c)—dissolution pores in feldspar grains; (d)—intergranular quartz fractures

表2 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层高压压汞孔隙结构参数

Table2 Pore structure parameters of high pressure mercury injection in tight reservoirs of Baikouquan Formation in Junggar basin and Yanchang Formation in Ordos basin

图5 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层毛管压力曲线及孔喉半径分布曲线

Fig.5 Capillary pressure curve and pore throat radius distribution curve of tight reservoirs in Baikouquan Formation of Junggar basin and Yanchang Formation of Ordos basin

(a)—百口泉组致密砾岩毛管压力曲线;(b)—延长组致密砂岩毛管压力曲线;(c)—百口泉组致密砾岩孔喉分布曲线; (d)—延长组致密砂岩孔喉分布曲线

(a)—Capillary pressure curve of tight conglomerate in Baikouquan Formation; (b)—capillary pressure curve of tight sandstone in Yanchang Formation; (c)—pore throat distribution curve of tight conglomerate of Baikouquan Formation; (d)—pore throat distribution curve of tight sandstone of Yanchang Formation

表3 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层微米CT孔隙结构参数

Table3 Micro CT pore structure parameters of tight reservoirs in Baikouquan Formation of Junggar basin and Yanchang Formation of Ordos basin

百口泉组致密砾岩和延长组致密砂岩样品的孔喉分布特征表明,百口泉组致密砾岩与延长组致密砂岩相比孔喉更为发育。此外,在百口泉组致密砾岩和延长组致密砂岩样品中,微米孔、小孔等小尺度孔隙喉道的数量要远远多于中孔、大孔等大尺度孔隙喉道的数量,但大尺度孔隙喉道对孔隙体积的贡献不可忽视。以孔隙分布特征为例,百口泉组大尺度孔隙数量占比为16.73%,而对应的孔隙体积占比高达52.39%;延长组大尺度孔隙数量仅占总孔隙的1.19%,其孔隙体积占比达到20.80%。百口泉组致密砂砾岩与延长组致密砂岩相比,大尺度孔隙喉道更为发育,并且对孔隙空间的贡献更大。

图6 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层微米CT孔喉分布特征

Fig.6 Micro CT pore throat distribution of tight reservoirs in Baikouquan Formation of Junggar basin and Yanchang Formation of Ordos basin

(a)—百口泉组致密砾岩孔喉数量占比;(b)—延长组致密砂岩孔喉数量占比;(c)—百口泉组致密砾岩孔喉体积占比; (d)—延长组致密砂岩孔喉体积占比

(a)—Percentage of pore throats in tight conglomerate of Baikouquan Formation; (b)—percentage of pore throats in tight sansstone of Yanchang Formation; (c)—proportion of pore throat volume of tight conglomerate in Baikouquan Formation; (d)—proportion of pore throat volume of tight sandstone in Yanchang Formation

4.2.3 聚焦离子束扫描电镜技术测试结果分析

聚焦离子束扫描电镜(FIB-SEM)最小分辨率可以达到0.5nm,能够反映纳米尺度孔隙分布特征。利用Avizo软件对FIB-SEM观测结果进行定量化表征,分别得到百口泉组致密砂砾岩和延长组致密砂岩储层的纳米级孔隙数量和体积分布特征,如图7所示。百口泉组致密砂砾岩储层中半径在0~200nm的孔隙数量最多,占总孔隙数量的比例超过95%;同时这部分孔隙也是孔隙体积的主要贡献者。延长组致密砂岩储层中孔隙数量主要集中在半径0~100nm范围内,孔隙体积主要由半径0~100nm和300~400nm孔隙提供。对比聚焦离子束扫描电镜与微米CT测试结果,两者得到的孔喉半径分布特征差异较大,造成这一差异的原因是这两种测试技术的分辨率不同,故所能表征的孔喉尺度范围也不同,微米CT测试结果主要反映微米尺度的孔喉分布特征,而聚焦离子束扫描电镜测试结果主要反映纳米尺度的孔喉分布特征。

4.3 孔隙连通性及复杂程度

微米CT能够反映孔隙连通性和复杂程度。百口泉组致密砂砾岩储层孔隙连通性整体较差,以M604-24样品为例,微米CT总孔隙度为5.41%,有效孔隙度为3.28%,连通率为60.63%(图8a)。延长组致密砂岩储层孔隙连通性整体较好,以W234-19样品为例,微米CT总孔隙度为9.65%,有效孔隙度为7.86%,连通率为81.45%(图8b)。进一步结合微米CT孔喉配位数、迂曲度、孔隙形状因子等参数对比百口泉组和延长组致密储层的孔隙结构复杂程度。百口泉组致密砂砾岩样品的孔喉配位数平均为3.0446,迂曲度平均为13.3,孔隙形状因子平均为0.0492;而延长组致密砂岩样品的孔喉配位数平均为2.7832,迂曲度平均为4.0,孔隙形状因子平均为0.0478(表3)。对比表明,百口泉组致密砂砾岩的孔隙结构与延长组致密砂岩的孔隙结构相比更为复杂。

图7 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层聚焦离子束扫描电镜纳米孔喉分布特征

Fig.7 Distribution characteristics of nano pore throat in tight reservoirs of Baikouquan Formation in Junggar basin and Yanchang Formation in Ordos basin by focused ion beam scanning electron microscopy

(a)—致密砂砾岩储层孔喉数量占比;(b)—致密砂砾岩储层孔喉体积占比

(a)—Proportion of pore throats in tight sandy conglomerate reservoir; (b)—proportion of pore throat volume in tight sandy conglomerate reservoir

图8 准噶尔盆地百口泉组和鄂尔多斯盆地延长组致密储层微米CT三维孔隙连通模型

Fig.8 3D micro CT pore connectivity model of tight reservoirs in Baikouquan Formation of Ordos basin and Yanchang Formation of Ordos basin

(a)—百口泉组M604-24致密砾岩样品孔隙连通模型;(b)—延长组W234-19致密砂岩样品孔隙连通模型

(a)—Pore connectivity model of M604-24tight conglomerate sample of Baikouquan Formation; (b)—pore connectivity model of W234-19tight sandstone sample in Yanchang Formation

5 孔隙结构差异机制 5.1 沉积作用

沉积作用决定储层的原始孔隙结构,表现为不同沉积相带的沉积物组分、碎屑颗粒大小及结构等因素不同从而控制储层原始孔隙结构(Morad et al., 2000)。此外,沉积作用也进一步影响了成岩作用及致密储层的孔隙结构演化。例如,沉积物组分以其不同的物理、化学稳定性影响压实作用的减孔效应。石英、长石等刚性颗粒含量高的岩石抗压实能力强,对原生粒间孔隙起到较好的保护作用;岩屑、云母等塑性颗粒含量高的岩石抗压实能力弱,在压实作用下颗粒容易变形而紧密堆积,从而造成原生粒间孔隙的大量损失;杂基在埋藏压实作用下易变形而充填原生粒间孔隙,因此杂基含量高的岩石不易保存粒间孔隙。碎屑颗粒大小影响孔隙结构,颗粒较大的沉积物通常具有较大的孔喉尺寸、孔隙体积和比表面积以及更好的孔隙连通性(Qiao Juncheng et al., 2020)。此外,碎屑颗粒的分选、磨圆等结构特征也会影响孔隙结构,通常分选好、磨圆度好的碎屑颗粒能够较好保留原生孔隙。百口泉组的沉积环境为扇三角洲,以扇三角洲前缘水下分流河道为优势沉积微相,水动力较强,沉积物粒度粗,以细砾为主,磨圆度较好,抗压实能力强,原生孔喉保存较好,孔喉连通性较好。延长组沉积时主体处于三角洲-湖泊沉积环境,主要发育三角洲前缘和半深湖-深湖重力流沉积。三角洲前缘以水下分流河道为优势沉积微相,沉积水动力较强,颗粒粒度以中细粒为主,颗粒分选、磨圆较好,泥质含量较少,岩石抗压实能力较强,有利于原生孔隙发育和保存。深湖-半深湖重力流沉积主要是三角洲前缘沉积物沿斜坡滑塌变形的结果(Ran Yixuan and Zhou Xiang, 2020),颗粒粒度较细,以细砂岩和粉砂岩为主,由于较短距离快速堆积,沉积物颗粒分选较差,杂基含量较多,抗压实能力较差,原生孔隙结构保存较差。综合对比百口泉组和延长组沉积作用特征,前者沉积物粒度较粗,杂基含量较低,石英含量较高,有利于原始孔隙结构保存;后者沉积物粒度较细,杂基含量较高,长石和岩屑含量较高,抗压实能力相对较差,不利于原始孔隙结构保存。

5.2 成岩作用 5.2.1 压实作用

压实作用包括机械压实作用和化学压实作用。化学压实作用通常在储层达到一定埋藏深度和地层温度时才会广泛进行,百口泉组(埋深2400~3900m)和延长组(埋深2300~2800m)埋藏深度均较浅,因此不考虑化学压实作用的影响(Yang Shangfeng et al., 2020)。机械压实作用是导致百口泉组砂砾岩和延长组砂岩储层原生粒间孔隙损失、原生孔隙度减小的主要成岩因素。前人研究表明,百口泉组致密砂砾岩储层原始孔隙度约为36%(Zhu Ning et al., 2019),由于压实作用损失孔隙度为10.51%~24.01%,平均为16.92%(Kuang Yan et al., 2017),平均减孔率约为47%;延长组致密砂岩储层原始孔隙度为35.35%~40.44%(平均38.45%),在埋藏过程中由于压实作用损失孔隙度为5.31%~32.26%(平均23.47%)(Li Pan et al., 2018),平均减孔率达到60%。对比发现,百口泉组致密砂砾岩储层在埋藏成岩过程中由于压实作用导致的原生粒间孔隙损失相对延长组致密砂岩储层较小,可能与百口泉组致密砂砾岩石英含量较高和碎屑颗粒粒度较大等有关。

5.2.2 胶结作用

胶结作用对储层孔隙具有建设性和破坏性双重效应,总体体现为破坏孔隙的成岩作用,主要包括黏土矿物胶结、碳酸盐岩胶结和硅质胶结等类型。结合X衍射结果,百口泉组主要发育绿泥石、伊蒙混层等黏土矿物胶结物,延长组主要发育方解石、白云石等碳酸盐胶结物和绿泥石、伊利石等黏土矿物胶结物。绿泥石胶结物主要在早成岩阶段发育,围绕碎屑颗粒表面形成包膜,在一定程度上减缓压实作用以及抑制石英、方解石等胶结作用,对原生粒间孔隙保存起到正向作用。自生伊利石主要由蒙脱石或高岭石转化而成,呈毛发状或丝状充填孔隙和喉道。伊蒙混层呈网状充填于粒间孔隙并一定程度上堵塞喉道。自生高岭石多充填于长石粒内溶蚀孔隙,集合体呈书页状或蠕虫状形态。黏土矿物胶结物虽然充填破坏了部分粒间孔隙和粒内溶蚀孔隙,但是提供了大量微米—纳米级晶间孔隙。百口泉组黏土矿物含量(平均17.78%)明显高于延长组黏土矿物含量(平均10.67%),提供了更多的微纳米级晶间孔隙,这也给百口泉组微纳米孔隙数量和体积大于延长组微纳米孔隙的现象提供了解释。百口泉组碳酸盐胶结物较不发育,一方面绿泥石薄膜的发育抑制早期方解石胶结物的形成,另一方面溶蚀作用可能溶解了部分早期形成的方解石;晚期发育的粗晶方解石主要赋存在长石粒内溶蚀孔隙中。延长组碳酸盐胶结物相对发育,以铁方解石和铁白云石广泛分布,充填粒间孔隙。硅质胶结物主要以石英加大边的形式填充剩余粒间孔隙、或是以自生石英晶体的形式填充长石和岩屑的粒内溶蚀孔隙。

5.2.3 溶蚀作用

溶蚀作用以长石和岩屑溶蚀为主,局部可见碳酸盐溶蚀。溶蚀作用能够产生大量的粒内溶蚀孔隙,对储层孔隙具有建设性作用。长石溶蚀广泛发育,与油气充注伴生的酸性流体密切相关。百口泉组主要经历两期溶蚀作用:早期溶蚀作用较弱,以斜长石溶蚀为主,产生的粒内溶蚀孔隙多被方解石胶结物充填;晚期溶蚀作用较强,以钾长石溶蚀为主,产生大量粒内溶蚀孔隙。根据X射线衍射结果,百口泉组含有较高含量的斜长石(平均值24.37%)和较低含量的钾长石(平均值2.36%),间接反映了长石选择性溶蚀作用。延长组主要经历了一期溶蚀作用,与大规模油气充注时期相匹配。根据X射线衍射结果,延长组的长石含量较高,斜长石和钾长石平均含量分别为29.92%和10.10%,比百口泉组的长石含量高,一定程度上反映延长组相对于百口泉组经历的长石溶蚀作用较弱,长石粒内溶孔较不发育。与剩余粒间孔隙相比,粒内溶蚀孔隙相对孤立,连通性差,对储层渗透率贡献不大。

图9 准噶尔盆地百口泉组致密砾岩孔隙成岩演化(据Kang Xun et al., 2019修改)

Fig.9 Diagenetic evolution of tight conglomerate pores in Baikouquan Formation, Junggar basin (modified after Kang Xun et al., 2019)

5.3 孔隙结构演化 5.3.1 孔隙度恢复

基于储层成岩作用及孔隙结构演化特征,对致密储层的历史孔隙度进行定量恢复,具体计算过程如下:① 根据Beard et al.(1973)提出的经验公式对原始孔隙度φ0进行恢复(式1),原始孔隙度φ0等于压实损失孔隙度φp加胶结损失孔隙度φc加残余孔隙度φr之和(式2);② 选取致密储层样品的铸体薄片,利用光学显微镜和Image Pro Plus图像分析软件分别统计致密砂岩样品的总面孔率m、胶结物面孔率mc、溶蚀孔面孔率md及残余孔面孔率mr,建立总面孔率m与总孔隙度φ的关系,进而求取胶结损失孔隙度φc、溶蚀增加孔隙度φd及残余孔隙度φr(式3);③ 结合百口泉组和延长组的埋藏演化过程和成岩作用序列,分别恢复它们的孔隙度演化历史:

φ0=20.91+22.90S0 (1)

图10 鄂尔多斯盆地延长组致密砂岩孔隙成岩演化(据Wang Wurong et al., 2019修改)

Fig.10 Diagenetic evolution of tight sandstone pores in Yanchang Formation, Ordos basin (modified after Wang Wurong et al., 2019)

φ0=φp+φc+φr-φd (2) mφ=mcφc+mdφd+mrφr (3)

式中:φ0为原始孔隙度(%);S0为分选系数;φp为压实损失孔隙度(%);φc为胶结损失孔隙度(%);φr为残余孔隙度(%);φd为溶蚀增加孔隙度(%);m为总面孔率(%);mc为胶结物面孔率(%);md为溶蚀孔面孔率(%);mr为残余孔面孔率(%)。

5.3.2 百口泉组成岩演化

综合地层埋藏史、成岩作用等判断百口泉组主要处于中成岩B期演化阶段(Wang Wei et al., 2016; Jin Jun et al., 2017; Guo Huajun et al., 2018; Kang Xun et al., 2019)(图9)。早三叠世,百口泉组沉积后快速沉降埋藏,在压实作用下原生粒间孔隙遭到破坏,孔隙体积减小;成岩环境表现为低温碱性还原条件,有利于在矿物和岩屑等颗粒表面形成绿泥石包膜。晚三叠世—早侏罗世,随着埋藏深度增加,压实作用进一步增强,原生粒间孔隙进一步损失。该时期发生第一次油气充注,油气充注强度较低,受有机酸影响成岩环境由碱性转化为弱酸性,富钙斜长石、岩屑等开始溶解,长石、岩屑粒内溶蚀孔隙开始发育;析出的Ca2+等碱性金属离子进入孔隙水中,为早期方解石胶结物提供物质来源和碱性环境。晚侏罗世—早白垩世,百口泉组发生第二次油气充注,有机酸和CO2明显降低了地层水pH值,促进酸性成岩环境的形成。该阶段钾长石加速溶解,早期沉淀的方解石也发生溶解,长石粒内溶蚀孔隙大量发育;蒙脱石向伊利石转化,伴生高岭石和自生石英,粒内溶蚀孔隙部分被充填,黏土矿物晶间孔隙发育。随着溶蚀作用析出的逐渐增多,地层流体pH值逐渐增大,晚期富Mn方解石胶结物开始形成(Zhu Ning et al., 2019)。

5.3.3 延长组成岩演化

根据碎屑岩成岩阶段划分标志,延长组处于中成岩A期演化阶段(Lu Jiehe et al., 2017; Wang Wurong et al., 2019; Wang Junjie et al., 2020)(图10)。晚三叠世—中侏罗世(早成岩A期),在浅埋藏环境下沉积物处于弱固结或半固结状态,原始粒间孔隙发育。该阶段成岩作用以机械压实作用为主,随着埋藏深度增加,原生粒间孔隙数量和体积都下降。自生绿泥石在碎屑颗粒表面沉淀,形成包膜,抑制石英次生加大的形成。晚侏罗世—早白垩世早期(早成岩B期),先沉淀方解石,该阶段压实作用强烈,伊利石胶结物等发育导致粒间孔隙急剧减小。该阶段发生一次油气充注,有机酸进入地层流体,对长石、岩屑颗粒进行溶蚀,粒内溶蚀孔隙发育,同时溶蚀作用释放的SiO2为石英胶结物提供了物质基础。早白垩世末期(中成岩A期),机械压实作用达到最大化(Lu Jiehe et al., 2017),石英次生加大边发育,阻塞原生孔隙,长石岩屑等碎屑颗粒进一步溶蚀,发育少量的粒间和长石溶蚀孔隙。伴随古地温增加,高岭石逐渐向伊利石和伊蒙混层转化,铁方解石和铁白云石胶结物广泛发育,是造成该阶段储层孔隙体积减小的主要原因。

6 结论

(1)准噶尔盆地百口泉组致密砾岩和鄂尔多斯盆地延长组致密砂岩孔隙类型以残余粒间孔隙、粒内溶蚀孔隙和黏土矿物晶间孔隙为主,孔喉呈多尺度连续分布特征,微—纳米孔喉占主导地位。百口泉组致密砾岩与延长组致密砂岩相比,前者储层物性较好、孔喉尺寸偏大、孔隙连通性较差及孔隙结构更为复杂。

(2)准噶尔盆地百口泉组沉积于扇三角洲环境,沉积物以细砾岩为主,原生粒间孔隙尺寸较大;在埋藏成岩演化过程中,经历了较强的压实作用和一定的胶结作用,损失了较多的原生粒间孔隙和部分粒内溶蚀孔隙,强烈的溶蚀作用产生大量的岩屑和长石粒内溶蚀孔隙,而较高含量的自生黏土矿物一定程度上增加了晶间孔隙,最终形成现今的致密砾岩储层。

(3)鄂尔多斯盆地延长组致密砂岩储层为三角洲—湖泊沉积体系,沉积物以细砂岩为主,原生粒间孔隙尺寸较小;在埋藏成岩演化过程中早期经历强烈压实作用,损失了大量的原生粒间孔隙,而后伴随油气充注的有机酸溶蚀作用产生大量长石粒内溶孔,后期铁方解石、铁白云石等胶结物的广泛发育对粒间孔隙造成进一步破坏,最终形成现今的致密砂岩。

(4)差异化沉积作用和成岩作用是导致百口泉组致密砾岩和延长组致密砂岩孔隙结构特征差异的根本原因。针对以上两种类型的致密储层,考虑到它们不同的孔隙结构特征,采取不同的开采技术手段,以期提高致密油气采收率。

参考文献

Anovitz L M, Cole D R. 2015. Characterization and analysis of porosity and pore structures. Reviews in Mineralogy & Geochemistry, 80(1): 61~164.

Bai Bin, Zhu Rukai, Wu Songtao, Yang Wenjing, Gelb J, Gu A, Zhang Xiangxiang, Su Ling. 2013. Multi-scale method of Nano (Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos basin. Petroleum Exploration and Development, 40(3): 329~333 (in Chinese with English abstract).

Beard D C, Weyl P K. 1973. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 57(2): 349~369.

Cao Yingchang, Yan Miaomiao, Xi Kelai, Wu Songtao, Zhu Ning, Zhu Rukai. 2019. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu depression. Acta Sedimentologica Sinica, 37(5): 945~956 (in Chinese with English abstract).

Dan Weidong, Cheng Qigui, Niu Xiaobing, Wang Chengyu, Liang Xiaogang, Xin Honggang. 2011. Integrated evaluation of low permeability reservoirs of Chang 4+5-Chang 8 Formations of main oil bearing blocks in Ordos basin. Journal of Oil and Gas Technology, 33(8): 48~53+4 (in Chinese with English abstract).

Fu Yu, Liu Yiqun, Jiang Yiqin, Yang Zhao, Yang Yiyao, Yue Zhenqi, Qiao Jianghua, Song Shijun. 2020. Pore structures and seepage characteristics of sand-conglomerate reservoirs of Baikouquan Formation in Triassic Mahu sag, northwestern margin of Junggar basin. Northwestern Geology, 53(2): 223~234 (in Chinese with English abstract).

Gou Qiyang, Xu Shang, Hao Fang, Yang Feng, Zhang Baiqiao, Shu Zhiguo, Zhang Aihua, Wang Yuxuan, Lu Yangbo, Cheng Xuan, Qing Jiawei, Gao Mengtian. 2019. Full-scale pores and micro-fractures characterization using FE-SEM, gas adsorption, nano-CT and micro-CT: a case study of the Silurian Longmaxi Formation shale in the Fuling area, Sichuan basin, China. Fuel, 253: 167~179.

Guo Huajun, Shan Xiang, Li Yazhe, Zou Zhiwen, Wang Libao. 2018. Lower limits of reservoir physical properties and controlling factors of Baikouquan Formation on the northern slope of Mahu sag. Xinjiang Petroleum Geology, 39(1): 63~69 (in Chinese with English abstract).

Huang Dingjie, Yu Xinghe, Tan Chengpeng, Huangfu Zhiyuan, Qu Jianhua, Li Hui. 2015. Pore structure features and its factor analysis of reservoirs in Baikouquan Formation, Mahu slope area. Journal of Northeast Petroleum University, 39(2): 9~18, 41 (in Chinese with English abstract).

Jin Jun, Kang Xun, Hu Wenxuan, Xiang Baoli, Wang Jian, Cao Jian. 2017. Diagenesis and its influence on coarse clastic reservoirs in the Baikouquan Formation of western slope of the Mahu depression, Junngar basin. Oil & Gas Geology, 38(2): 323~333+406 (in Chinese with English abstract).

Kang Xun, Hu Wenxuan, Wang Jian, Cao Jian, Yang Zhao. 2017. Fan-delta sandy conglomerate reservoir sensitivity: a case study of the Baikouquan Formation in the Mahu sag, Junggar basin. Journal of China University of Mining & Technology, 46(3): 596~605 (in Chinese with English abstract).

Kang Xun, Hu Wenxuan, Cao Jian, Wu Haiguang, Xiang Baoli, Wang Jian. 2019. Controls on reservoir quality in fan-deltaic conglomerates: insight from the Lower Triassic Baikouquan Formation, Junggar basin, China. Marine and Petroleum Geology, 103: 55~75.

Kong Xingxing, Xiao Dianshi, Jiang Shu, Lu Shuangfang, Sun Bin, Wang Jingming. 2020. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs: a case study of the Linxing block in the Ordos basin. Natural Gas Industry, 40(3): 38~47 (in Chinese with English abstract).

Kuang Yan, Sima Liqiang, Qu Jianhua, Wen Dani, Chen Meng, Wu Feng. 2017. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoir: a case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu sag. Lithologic Reservoirs, 29(4): 91~100 (in Chinese with English abstract).

Li Chaozheng, Liu Guangdi, Cao Zhe, Niu Zicheng, Niu Xiaobing, Wang Peng, Zhang Mengyuan, Zhang Kaidi. 2016. The study of Chang 7 tight sandstone micro pore characteristics in Longdong area, Ordos basin. Natural Gas Geoscience, 27(7): 1235~1247 (in Chinese with English abstract).

Li Junjian, Liu Yang, Gao Yajun, Cheng Baoxiang, Men Fanle, Xu Huaimin. 2018. Effects of microscopic pore structure heterogeneity on the distribution and morphology of remaining oil. Petroleum Exploration and Development, 45(6): 1043~1052 (in Chinese with English abstract).

Li Pan, Sun Wei, Du Kun, Huang Hexin, Bai Yunyun. 2018. Effect of differential diagenesis on the quantitative evolution of porosity in tight sandstone reservoirs: taking the Chang 6 reservoir of the Jiyuan oilfield in Ordos basin as an example. Geoscience, 32(3): 527~536.

Li Zhiqing, Shen Xin, Qi Zhiyu, Hu Ruilin. 2017. Comparations between mercury intrusion and gas adsorption for pore structure characteristics of shale. Journal of Engineering Geology, 25(6): 1405~1413 (in Chinese with English abstract).

Liu Dengke. 2019. The responding mechanism between diagenetic evolution-hydrocarbon filling and microscopic pore-throat structures of tight sandstone reservoir. Doctoral dissertation of Northwest University (in Chinese with English abstract).

Liu Na, NanJunxiang, Liu Wei, Feng Shengbin. 2014. Test method and characteristics for micro-pore throat structure of Chang 7 tight standstone reservoirs. Petrochemical Industry Application, 33(7): 7~13 (in Chinese with English abstract).

Lu Jiehe, Wang Xiangzeng, He Yonghong, Yang Chao, Deng Naotao. 2017. Diagenesis and porosity evolution of Chang 7 tight sandstones in Fuxian area, Ordos basin. Journal of Northeast Petroleum University, 41(3): 9~20+5~6 (in Chinese with English abstract).

Ma Haiyang, Xia Zunyi, Wen Qingzhi, Zhang Pengyu. 2019. Micro-pore characteristics of shale in Zhanhua sag, Bohai Bay basin. Petroleum Geology & Experiment, 41(1): 153~160 (in Chinese with English abstract).

Martin A J, Solomon S T, Hartmann D J. 1997. Characterization of petrophysical flow units in carbonate reservoirs. AAPG Bulletin, 81(5): 734~759.

Morad S, Ketzer J R M, de Ros L F. 2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47: 95~120.

Nelson P H. 2009. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bulletin, 93(3): 329~340.

Ning Chuanxiang, Jiang Zhenxue, Gao Zhiye, Li Zheng, Zhu Rifang, Su Siyuan, Li Tingwei, Wang Zhi, Huang Ruizhe, Chen Lei. 2017. Quantitative evaluation of pore connectivity with nuclear magnetic resonance and high pressure mercury injection: a case study of the lower section of Es3 in Zhanghua sag. Journal of China University of Mining & Technology, 46(3): 578~585 (in Chinese with English abstract).

Nooruddin H A, Hossain M E, Hasan A, Okasha T. 2014. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. Journal of Petroleum Science and Engineering, 121: 9~22.

Qiao Juncheng, Zeng Jianhui, Jiang Shu, Wang Yanu. 2020. Impacts of sedimentology and diagenesis on pore structure and reservoir quality in tight oil sandstone reservoirs: implications for macroscopic and microscopic heterogeneities. Marine and Petroleum Geology, 111: 279~300.

Qiu Zhen, Zou Caineng. 2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1~29 (in Chinese with English abstract).

Qu Jianhua, Zhang Lei, Wu Jun, You Xincai. 2017. Characteristics of sandy conglomerate reservoirs and controlling factors on physical properties of Baikouquan Formation in the western slope of Mahu sag, Junggar basin. Xinjiang Petroleum Geology, 38(1): 1~6 (in Chinese with English abstract).

Qu Yiqian, Sun Wei, Tao Rongde, Luo Bin, Chen Lei, Ren Dazhong. 2020. Pore-throat structure and fractal characteristics of tight sandstones in Yanchang Formation, Ordos basin. Marine and Petroleum Geology, 120: 104573.

Ran Yixuan, Zhou Xiang. 2020. Sedimentary characteristics and petroleum geological significance of the Chang 6 gravity flow in the Southwest Ordos basin. Acta Sedimentologica Sinica, 38(3): 571~579 (in Chinese with English abstract).

Sima Liqiang, Yang Guodong, Wu Feng, Wang Liang, Meng Fan. 2016. Fractal feature about the pore structure and controlling factor in tight glutenite reservoir in Baikouquan Formation of Mahu depression in Junggar basin. Well Logging Technology, 40(5): 609~616 (in Chinese with English abstract).

Sun Longde, Zou Caineng, Jia Ailin, Wei Yunsheng, Zhu Rukai, Wu Songtao, Guo Zhi. 2019. Development characteristics and orientation of tight oil and gas in China. Petroleum Exploration and Development, 46(6): 1015~1026 (in Chinese with English abstract).

Sun Xiaolong, Zhang Xianguo, Lin Chengyan, Zhao Zhongxiang, Ma Cunfei, Lin Jianli. 2017. Quantitative evaluation method of HPMI pore-throat distribution based on NMR calibration. Rock and Mineral Analysis, 36(6): 601~607 (in Chinese with English abstract).

Tian Hua, Zhang Shuichang, Liu Shaobo, Zhang Hong. 2012. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods. Acta Petrolei Sinica, 33(3): 419~427 (in Chinese with English abstract).

Wang Fuyong, Cheng Hui. 2020. Characterization of pore structure and petrophysical properties of tight sandstone of Yanchang Formation, Ordos basin. Journal of Jilin University (Earth Science Edition), 50(3): 721~731 (in Chinese with English abstract).

Wang He, Shi Yongmin, Xu Dawei, Chen Xuan, Li Lamaocaidan. 2019. Unconventional reservoir pore structure characterization techniques and progress. Petroleum Geology and Recovery Efficiency, 26(5): 21~30 (in Chinese with English abstract).

Wang Junjie, Wu Shenghe, Li Qing, Xiao Shuming. 2020. Controls of diagenetic alteration on the reservoir quality of tight sandstone reservoirs in the Triassic Yanchang Formation of the Ordos basin, China. Journal of Asian Earth Sciences, 200: 104472.

Wang Qianyou, Yang Wei, Zuo Rusi, Jiang Zhenxue, Li Yaohua, Liu Dan, Cui Zhengjie, Cai Jianfeng, Cui Zhe, Gu Xiaomin. 2019. Quantitative evaluation of pore-throat network structure differences in tight reservoirs with combined micro-CT and high pressure mercury. China Energy and Environmental Protection, 41(7): 80~85+94 (in Chinese with English abstract).

Wang Wei, Chang Qiusheng, Zhao Yanwei, Zhang Ni. 2016. Reservoir space types and evolution characteristics of the Baikouquan Formation glutenite reservoir on the western slope of the Mahu sag. Journal of Geology, 40(2): 228~233 (in Chinese with English abstract).

Wang Wurong, Yue Dali, Zhao Jiyong, Li Wei, Wang Bo, Wu Shenghe, Li Shuheng. 2019. Diagenetic alteration and its control on reservoir quality of tight sandstones in lacustrine deep-water gravity-flow deposits: a case study of the Yanchang Formation, southern Ordos basin, China. Marine and Petroleum Geology, 110: 676~694.

Xiao Dianshi, Lu Shuangfang, Lu Zhengyuan, Huang Wenbiao, Gu Meiwei. 2016. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones. Petroleum Exploration and Development, 43(6): 961~970 (in Chinese with English abstract).

Xiao Meng, Yuan Xuanjun, Wu Songtao, Cao Zhenglin, Tang Yong, Xie Zongrui, Wang Ruiju. 2019. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu sag, Junggar basin. Earth Science Frontiers, 26(1): 212~224 (in Chinese with English abstract).

Xiao Meng, Wu Ssongtao, Yuan Xuanjun, Cao Zhenglin, Xie Zongrui. 2020. Diagenesis effects on the conglomerate reservoir quality of the Baikouquan Formation, Junggar basin, China. Journal of Petroleum Science and Engineering, 195: 107599.

Xiong Jian, Tang Yong, Liu Xiangjun, Qu Jianhua, Liu Kai, You Xincai. 2018. Using micro-CT scanning technology to study characteristics of pore structures in sandy conglomerate: a case from Baikouquan Formation in Mahu sag, Junggar basin. Xinjiang Petroleum Geology, 39(2): 236~243 (in Chinese with English abstract).

Yang Shangfeng, Bao Zhidong, Wang Nan, Qu Xuefeng, Lin Yanbo, Shen Jinjiang, Awan Sarwar. 2020. Diagenetic evolution and its impact on reservoir quality of tight sandstones: a case study of the Triassic Chang 6 Member, Ordos basin, northwest China. Marine and Petroleum Geology, 117: 104360.

Yang Xiao, Jiang Zhenxue, Song Yan, Huang Hexin, Tang Xianglu, Ji Wenming, Li Zhuo, Wang Pengfei, Chen Lei. 2016. A comparative study on whole-aperture pore structure characteristics between Niutitang and Longmaxi Formation of high-matruity marine shales in southeastern Chongqing. Geological Journal of China Universities, 22(2): 368~377 (in Chinese with English abstract).

Yang Zhi, Zou Caineng. 2019. “Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas. Petroleum Exploration and Development, 46(1): 176~187 (in Chinese with English abstract).

Yu Yuxi, Wang Zongxiu, Zhang Kaixun, Cheng Ming. 2020. Advances in quantitative characterization of shale pore structure by using fluid injection methods. Journal of Geomechanics, 26(2): 201~210 (in Chinese with English abstract).

Zhang Fan, Jiang Zhenxue, Sun Wei, Li Yaohua, Zhang Xi, Zhu Lin, Wen Ming. 2019. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Marine and Petroleum Geology, 109: 208~222.

Zhang Hao, Chen Gang, Zhu Yushaung, Dang Yongchao, Chen Juan, Wang Hengli, Si Yang, Bai Chao, Li Xue. 2017. Quantitative characterization of microscopic pore throat structure in tight sandstone oil reservoirs: a case study of Chang 7 reservoir in Xin'anbian oil field, Ordos basin. Petroleum Geology & Experiment, 39(1): 112~119 (in Chinese with English abstract).

Zhang Quanpei, Wu Wenrui, Liu Liping, Yang Hongmei, Wang Lianguo, Xie Yuhang, Zhu Yushaung. 2020. Pore structure and fractal characteristics of ultra-low permeability reservoirs in Yanchang Formation in Zhenbei area, Ordos basin. Petroleum Geology and Recovery Efficiency, 27(3): 20~31 (in Chinese with English abstract).

Zhang Tianfu, Bao Zhengyu, Li Dong, Tang Junhong, Zhou Wenda. 2016. Experimental methods for shale pore system. Geological Science and Technology Information, 35(4): 192~198 (in Chinese with English abstract).

Zhang Tongyao, Hao Peng. 2020. Fine characterization of the reservoir space in deep ultra-low porosity and ultra-low permeability glutenite in Bozhong sag. Geological Science and Technology Information, 39(4): 117~124 (in Chinese with English abstract).

Zhang Xi, Sun Wei, Yang Xiaojing, Li Hao. 2017. Quantitative calculation of tight sandstone reservoir porosity evolution based on different diagenesis: a case study of Chang 63 reservoir in Huaqing area, Ordos basin. Petroleum Geology & Experiment, 39(1): 126~133 (in Chinese with English abstract).

Zhu Ning, Cao Yingchang, Xi Kelai, Wu Songtao, Zhu Rukai, Yan Miaomiao, Ning Shunkang. 2019. Diagenesis and physical properties evolution of sandy conglomerate reservoirs: a case study of Triassic Baikouquan Formation in northern slope zone of Mahu depression. Journal of China University of Mining & Technology, 48(5): 1102~1118 (in Chinese with English abstract).

Zhu Peng, Dong Yixin, Chen Ming, Li Zhiqiang, Han Bin, Wang Jiuyuan, Cui Ying. 2020. Quantitative evaluation of pore structure from mineralogical and diagenetic information extracted from well logs in tight sandstone reservoirs. Journal of Natural Gas Science and Engineering, 80: 103376.

Zhu Rukai, Wu Songtao, Cui Jingwei, Bai Bin, Yang Zhi, Hui Xiao, Feng Jiarui, Su Ling, Shi Wen, Wang Xiaorui. 2016. Classification and evaluation of pore size in oil & gas reservoir rocks. Geological Science and Technology Information, 35(3): 133~144 (in Chinese with English abstract).

Zhu Xiaomin, Pan Rong, Zhu Shifa, Wei Wei, Ye Lei. 2018. Research progress and core issues in tight reservoir exploration. Earth Science Frontiers, 25(2): 141~146 (in Chinese with English abstract).

白斌, 朱如凯, 吴松涛, 杨文静, Jeff Gelb, Allen Gu, 张响响, 苏玲. 2013. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 40(3): 329~333.

操应长, 燕苗苗, 葸克来, 吴松涛, 朱宁, 朱如凯. 2019. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素. 沉积学报, 37(5): 945~956.

淡卫东, 程启贵, 牛小兵, 王成玉, 粱晓伟, 辛宏刚. 2011. 鄂尔多斯盆地重点含油区块长4+5—长8油层组低渗透储层综合评价. 石油天然气学报, 33(8): 48~53+4.

付瑜, 柳益群, 蒋宜勤, 杨召, 杨奕曜, 岳祯奇, 乔江华, 宋世骏. 2020. 准噶尔盆地西北缘玛湖凹陷砂砾岩储层孔隙结构与渗流特征研究. 西北地质, 53(2): 223~234.

郭华军, 单祥, 李亚哲, 邹志文, 王力宝. 2018. 玛湖凹陷北斜坡百口泉组储集层物性下限及控制因素. 新疆石油地质, 39(1): 63~69.

黄丁杰, 于兴河, 谭程鹏, 皇甫致远, 瞿建华, 李辉. 2015. 玛西斜坡区百口泉组储层孔隙结构特征及控制因素分析. 东北石油大学学报, 39(2): 9~18, 41.

靳军, 康逊, 胡文瑄, 向宝力, 王剑, 曹剑. 2017. 准噶尔盆地玛湖凹陷西斜坡百口泉组砂砾岩储层成岩作用及对储集性能的影响. 石油与天然气地质, 38(2): 323~333+406.

康逊, 胡文瑄, 王剑, 曹剑, 杨召. 2017. 扇三角洲砂砾岩油藏储层敏感性研究——以准噶尔盆地玛湖凹陷百口泉组为例. 中国矿业大学学报, 46(3): 596~605.

孔星星, 肖佃师, 蒋恕, 卢双舫, 孙斌, 王璟明. 2020. 联合高压压汞和核磁共振分类评价致密砂岩储层——以鄂尔多斯盆地临兴区块为例. 天然气工业, 40(3): 38~47.

况晏, 司马立强, 瞿建华, 温丹妮, 陈猛, 吴丰. 2017. 致密砂砾岩储层孔隙结构影响因素及定量评价——以玛湖凹陷玛131井区三叠系百口泉组为例. 岩性油气藏, 29(4): 91~100.

黎盼, 孙卫, 杜堃, 黄何鑫, 白云云. 2018. 致密砂岩储层不同成岩作用对孔隙度定量演化的影响: 以鄂尔多斯盆地姬塬油田长6储层为例. 现代地质, 32(3): 527~536.

李超正, 柳广弟, 曹喆, 牛子铖, 牛小兵, 王朋, 张梦媛, 张凯迪. 2016. 鄂尔多斯盆地陇东地区长7段致密砂岩微孔隙特征. 天然气地球科学, 27(7): 1235~1247.

李俊键, 刘洋, 高亚军, 成宝洋, 孟凡乐, 徐怀民. 2018. 微观孔喉结构非均质性对剩余油分布形态的影响. 石油勘探与开发, 45(6): 1043~1052.

李志清, 沈鑫, 戚志宇, 胡瑞林. 2017. 基于压汞法与气体吸附法的页岩孔隙结构特征对比研究. 工程地质学报, 25(6): 1405~1413.

刘登科. 2019. 致密砂岩储层成岩演化及烃类充注与微观孔喉结构响应机制研究. 西北大学博士学位论文.

柳娜, 南珺祥, 刘伟, 冯胜斌. 2014. 长7致密砂岩微观孔喉结构测试及特征. 石油化工应用, 33(7): 7~13.

卢杰河, 王香增, 贺永红, 杨超, 邓南涛. 2017. 鄂尔多斯盆地富县地区长7油层组致密砂岩成岩作用及孔隙演化. 东北石油大学学报, 41(3): 9~20+5~6.

马海洋, 夏遵义, 温庆志, 张鹏宇. 2019. 渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究. 石油实验地质, 41(1): 153~160.

宁传祥, 姜振学, 高之业, 李政, 朱日房, 苏思远, 李廷微, 王智, 黄睿哲, 陈磊. 2017. 用核磁共振和高压压汞定量评价储层孔隙连通性——以沾化凹陷沙三下亚段为例. 中国矿业大学学报, 46(3): 578~585.

邱振, 邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1~29. 瞿建华, 张磊, 吴俊, 尤新才. 2017. 玛湖凹陷西斜坡百口泉组砂砾岩储集层特征及物性控制因素. 新疆石油地质, 38(1): 1~6.

冉逸轩, 周翔. 2020. 鄂尔多斯盆地西南部延长组6段重力流沉积特征及其油气地质意义. 沉积学报, 38(3): 571~579.

司马立强, 杨国栋, 吴丰, 王亮, 孟凡. 2016. 准噶尔盆地玛湖凹陷百口泉组致密砂砾岩孔隙分形特征及影响因素探讨. 测井技术, 40(5): 609~616.

孙龙德, 邹才能, 贾爱林, 位云生, 朱如凯, 吴松涛, 郭智. 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015~1026.

孙小龙, 张宪国, 林承焰, 赵仲祥, 马存飞, 林建力. 2017. 基于核磁共振标定的高压压汞孔喉分布定量评价方法. 岩矿测试, 36(6): 601~607.

田华, 张水昌, 柳少波, 张洪. 2012. 压汞法和气体吸附法研究富有机质页岩孔隙特征. 石油学报, 33(3): 419~427.

汪贺, 师永民, 徐大卫, 陈旋, 李拉毛才旦. 2019. 非常规储层孔隙结构表征技术及进展. 油气地质与采收率, 26(5): 21~30.

王付勇, 程辉. 2020. 鄂尔多斯盆地延长组致密砂岩孔喉结构与油藏物性表征. 吉林大学学报(地球科学版), 50(3): 721~731.

王乾右, 杨威, 左如斯, 姜振学, 李耀华, 刘聃, 崔政劼, 蔡剑锋, 崔哲, 顾小敏. 2019. 联合微米CT和高压压汞的致密储层孔喉网络结构差异定量评价. 能源与环保, 41(7): 80~85+94.

王伟, 常秋生, 赵延伟, 张妮. 2016. 玛湖凹陷西斜坡百口泉组砂砾岩储层储集空间类型及演化特征. 地质学刊, 40(2): 228~233.

肖佃师, 卢双舫, 陆正元, 黄文彪, 谷美维. 2016. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构. 石油勘探与开发, 43(6): 961~970.

肖萌, 袁选俊, 吴松涛, 曹正林, 唐勇, 谢宗瑞, 王瑞菊. 2019. 准噶尔盆地玛湖凹陷百口泉组砾岩储层特征及其主控因素. 地学前缘, 26(1): 212~224.

熊健, 唐勇, 刘向君, 瞿建华, 刘凯, 尤新才. 2018. 应用微CT技术研究砂砾岩孔隙结构特征——以玛湖凹陷百口泉组储集层为例. 新疆石油地质, 39(2): 236~243.

杨潇, 姜振学, 宋岩, 黄何鑫, 唐相路, 纪文明, 李卓, 王朋飞, 陈磊. 2016. 渝东南牛蹄塘组与龙马溪组高演化海相页岩全孔径孔隙结构特征对比研究. 高校地质学报, 22(2): 368~377.

杨智, 邹才能. 2019. “进源找油”: 源岩油气内涵与前景. 石油勘探与开发, 46(1): 176~187.

俞雨溪, 王宗秀, 张凯逊, 程明. 2020. 流体注入法定量表征页岩孔隙结构测试方法研究进展. 地质力学学报, 26(2): 201~210.

张浩, 陈刚, 朱玉双, 党永潮, 陈娟, 王恒力, 斯扬, 白超, 李雪. 2017. 致密油储层微观孔隙结构定量表征——以鄂尔多斯盆地新安边油田长7储层为例. 石油实验地质, 39(1): 112~119.

张茜, 孙卫, 杨晓菁, 李浩. 2017. 致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响——以鄂尔多斯盆地华庆地区长63储层为例. 石油实验地质, 39(1): 126~133.

张全培, 吴文瑞, 刘丽萍, 杨红梅, 王联国, 解宇航, 朱玉双. 2020. 鄂尔多斯盆地镇北地区延长组超低渗透储层孔隙结构及其分形特征. 油气地质与采收率, 27(3): 20~31.

张天付, 鲍征宇, 李东, 唐俊红, 周闻达. 2016. 页岩孔隙系统研究实验方法. 地质科技情报, 35(4): 192~198.

张铜耀, 郝鹏. 2020. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征. 地质科技通报, 39(4): 117~124.

朱宁, 操应长, 葸克来, 吴松涛, 朱如凯, 燕苗苗, 宁顺康. 2019. 砂砾岩储层成岩作用与物性演化——以玛湖凹陷北斜坡区三叠系百口泉组为例. 中国矿业大学学报, 48(5): 1102~1118.

朱如凯, 吴松涛, 崔景伟, 白斌, 杨智, 惠潇, 冯佳睿, 苏玲, 时文, 王晓瑞. 2016. 油气储层中孔隙尺寸分级评价的讨论. 地质科技情报, 35(3): 133~144.

朱筱敏, 潘荣, 朱世发, 魏巍, 叶蕾. 2018. 致密储层研究进展和热点问题分析. 地学前缘, 25(2): 141~146.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有