机器学习/深度学习中为什么要做特征归一化/标准化? 您所在的位置:网站首页 神经网络输入一定要归一化吗 机器学习/深度学习中为什么要做特征归一化/标准化?

机器学习/深度学习中为什么要做特征归一化/标准化?

2024-07-15 07:18| 来源: 网络整理| 查看: 265

涉及或隐含距离计算的算法,比如K-means、KNN、PCA、SVM等,一般需要feature scaling,因为:

zero-mean一般可以增加样本间余弦距离或者内积结果的差异,区分力更强,假设数据集集中分布在第一象限遥远的右上角,将其平移到原点处,可以想象样本间余弦距离的差异被放大了。在模版匹配中,zero-mean可以明显提高响应结果的区分度。就欧式距离而言,增大某个特征的尺度,相当于增加了其在距离计算中的权重,如果有明确的先验知识表明某个特征很重要,那么适当增加其权重可能有正向效果,但如果没有这样的先验,或者目的就是想知道哪些特征更重要,那么就需要先feature scaling,对各维特征等而视之。增大尺度的同时也增大了该特征维度上的方差,PCA算法倾向于关注方差较大的特征所在的坐标轴方向,其他特征可能会被忽视,因此,在PCA前做Standardization效果可能更好,如下图所示,图片来自scikit learn-Importance of Feature Scaling. 在这里插入图片描述

损失函数中含有正则项时,一般需要feature scaling:对于线性模型 y = w x + b y=wx+b y=wx+b 而言,x的任何线性变换(平移、放缩),都可以被 w w w 和 b b b “吸收”掉,理论上,不会影响模型的拟合能力。但是,如果损失函数中含有正则项,如 λ ∥ w ∥ 2 \lambda\left\| w\right\|^2 λ∥w∥2, λ \lambda λ 为超参数,其对 w w w 的每一个参数施加同样的惩罚,但对于某一维特征 x i x_i xi​ 而言,其scale越大,系数 w i w_i wi​ 越小,其在正则项中的比重就会变小,相当于对 w i w_i wi​ 惩罚变小,即损失函数会相对忽视那些scale增大的特征,这并不合理,所以需要feature scaling,使损失函数平等看待每一维特征。

梯度下降算法,需要feature scaling。梯度下降的参数更新公式如下: W ( t + 1 ) = W ( t ) − η ∂ E ( W ) ∂ W W(t+1)=W(t)-\eta\frac{\partial E(W)}{\partial W} W(t+1)=W(t)−η∂W∂E(W)​ E(W)为损失函数,收敛速度取决于:参数的初始位置到local minima的距离,以及学习率 η \eta η 的大小。一维情况下,在local minima附近,不同学习率对梯度下降的影响如下图所示: 在这里插入图片描述 多维情况下可以分解成多个上图,每个维度上分别下降,参数W为向量,但学习率只有1个,即所有参数维度共用同一个学习率(暂不考虑为每个维度都分配单独学习率的算法)。收敛意味着在每个参数维度上都取得极小值,每个参数维度上的偏导数都为0,但是每个参数维度上的下降速度是不同的,为了每个维度上都能收敛,学习率应取所有维度在当前位置合适步长中最小的那个。下面讨论feature scaling对gradient descent的作用:

zero center与参数初始化相配合,缩短初始参数位置与local minimum间的距离,加快收敛。模型的最终参数是未知的,所以一般随机初始化,比如从0均值的均匀分布或高斯分布中采样得到,对线性模型而言,其分界面初始位置大致在原点附近,bias经常初始化为0,则分界面直接通过原点。同时,为了收敛,学习率不会很大。而每个数据集的特征分布是不一样的,如果其分布集中且距离原点较远,比如位于第一象限遥远的右上角,分界面可能需要花费很多步骤才能“爬到”数据集所在的位置。所以,无论什么数据集,先平移到原点,再配合参数初始化,可以保证分界面一定会穿过数据集。此外,outliers常分布在数据集的外围,与分界面从外部向内挪动相比,从中心区域开始挪动可能受outliers的影响更小。对于采用均方误差损失LMS的线性模型,损失函数恰为二阶,如下: E ( W ) = 1 2 P ∑ p = 1 P ∣ d p − ∑ i w i x i p ∣ 2 E(W)=\frac{1}{2 P} \sum_{p=1}^{P}\left|d^{p}-\sum_{i} w_{i} x_{i}^{p}\right|^{2} E(W)=2P1​p=1∑P​∣∣∣∣∣​dp−i∑​wi​xip​∣∣∣∣∣​2 不同方向上的下降速度变化不同(二阶导不同,曲率不同),恰由输入的协方差矩阵决定,通过scaling改变了损失函数的形状,减小不同方向上的曲率差异。将每个维度上的下降分解来看,给定一个下降步长,如果不够小,有的维度下降的多,有的下降的少,有的还可能在上升,损失函数的整体表现可能是上升也可能是下降,就会不稳定。scaling后不同方向上的曲率相对更接近,更容易选择到合适的学习率,使下降过程相对更稳定。另有从Hessian矩阵特征值以及condition number角度的理解,详见Lecun paper-Efficient BackProp中的Convergence of Gradient Descent一节,有清晰的数学描述,同时还介绍了白化的作用——解除特征间的线性相关性,使每个维度上的梯度下降可独立看待。文章开篇的椭圆形和圆形等高线图,仅在采用均方误差的线性模型上适用,其他损失函数或更复杂的模型,如深度神经网络,损失函数的error surface可能很复杂,并不能简单地用椭圆和圆来刻画,所以用它来解释feature scaling对所有损失函数的梯度下降的作用,似乎过于简化,见Hinton vedio-3.2 The error surface for a linear neuron。对于损失函数不是均方误差的情况,只要权重w与输入特征x间是相乘关系,损失函数对w的偏导必然含有因子x,w的梯度下降速度就会受到特征x尺度的影响。理论上为每个参数都设置上自适应的学习率,可以吸收掉x尺度的影响,但在实践中出于计算量的考虑,往往还是所有参数共用一个学习率,此时x尺度不同可能会导致不同方向上的下降速度悬殊较大,学习率不容易选择,下降过程也可能不稳定,通过scaling可对不同方向上的下降速度有所控制,使下降过程相对更稳定。对于传统的神经网络,对输入做feature scaling也很重要,因为采用sigmoid等有饱和区的激活函数,如果输入分布范围很广,参数初始化时没有适配好,很容易直接陷入饱和区,导致梯度消失,所以,需要对输入做Standardization或映射到[0,1]、[−1,1],配合精心设计的参数初始化方法,对值域进行控制。但自从有了Batch Normalization,每次线性变换改变特征分布后,都会重新进行Normalization,似乎可以不太需要对网络的输入进行feature scaling了?但习惯上还是会做feature scaling。


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有