液晶面板的表面缺陷及其检测方法 您所在的位置:网站首页 液晶屏显示器是否打高压测试线 液晶面板的表面缺陷及其检测方法

液晶面板的表面缺陷及其检测方法

2024-07-16 11:57| 来源: 网络整理| 查看: 265

来源 | 机器视觉沙龙

随着新一代信息通信技术的迅猛发展,作为终端设备的智能手机、平板电脑、智能家居等产品的市场需求持续增长,液晶面板生产规模急剧增大,成为信息产业中的支柱之一。

液晶面板行业的崛起,带动面板质检需求的暴增。

传统的缺陷检测主要由人眼辨别,这给企业把控生产质量和提高生产效率,带来巨大困难。有鉴于此,采用一种新型的面板质量检测方式来代替人工检测是亟待解决的技术问题。

f659d4229c06632adc89667129b8bcc0.png

01 液晶面板缺陷由来

薄膜显晶体管液晶显示器(TFT-LCD)具有高分辨率和功耗低等优点,因此被广泛应用于显示器行业。

但是显示屏的生产过程流程多、环境等因素,难以避免会出现缺陷显示屏,导致产品不良率较高。TFT-LCD显示屏的制作包括镀膜、刻蚀、显影、面板组合、灌晶封口和安装驱动芯片等工艺,复杂的工序导致缺陷的出现,常见的缺陷包括点缺陷,线缺陷和Mura缺陷。

“Mura”一词来源于日语,译为斑点、脏污,也被称为“云斑”,是显示缺陷中最难检测的缺陷之一。传统的Mura检测方法是通过人工视觉检查的方式实现的,主要采用裸眼辨别的方法。此方法效率低下,并且容易造成视觉疲劳,从而导致结果正确率降低。

基于机器视觉的液晶面板检测,可实现对液晶面板的各个生产工艺产生的缺陷进行检测,包括Array(阵列)工艺,CF(彩膜)工艺,CELL(成盒)工艺,Module(模组)工艺,可实现对crack(裂纹),broken(破损),chip(崩边),scratch(划痕),burr(毛刺),drop(水滴)等缺陷的有效检测区分。

51020effb497b880633c740c88abc4a9.png

02 液晶面板检测难点

产品面积大产能高,人工无法做到每张都检测,存在漏检风险

液晶面板未切割前通常面积很大,以10.5代线为例,整张面板面积可达到3370mm*2940mm,人工检测难度极大、易疲劳,采用人工检测不能保证产能及准确性。

面板缺陷极易导致产品出现破碎

液晶面板生产过程中会概率性出现崩边、破损、裂纹、划痕等缺陷,如不及时发现并加以处理,进入下道生产工序主设备,可能会在生产过程中在设备内部发生玻璃破碎现象,从而必须进行主设备停机检修清理,导致停产经济损失。

缺陷出现的位置、类型无法统计归纳分析,无法做到数字化

人工检测无图片影像资料记录,检测标准一致性差,无法进行产品追溯。

招工难度大,人力成本高

随着人均工资水平不断提高,用人成本也逐年升高,且招工难度大、人员流动性大。且人工检测对于眼睛的伤害比较大,导致人员的流动性大,招工有一定的困难。

03 液晶面板检测方法

近年来,许多基于计算机视觉的面板缺陷检测系统不断涌现,但各厂商利用的缺陷检测算法基本上都是比较传统的视觉方法。但是随着生产工艺不断进步,检测要求随之提高,检测精度要求也在不断增加,对算法的实时性要求也大大提高。

随着深度学习的兴起,对于这种难以检测的缺陷,我们利用卷积神经网络(CNN)进行屏幕缺陷的检测。

对于检测问题,现有的目标检测算法有很多,可以实现较高精度和实时性的检测,有效对液晶面板瑕疵进行识别和分类——实现针对崩边、裂纹、脏污、水滴、划痕等缺陷检测,并与主生产设备对接,检测到缺陷后根据缺陷的类型自动做出反馈判断:停机或报警,现场无需工作人员实时监控。

b1395f1a1b883d151c7e6cee35b8f67e.png

增效率

深度学习算法可以更精准的识别出崩边等生产隐患,即杜绝由于玻璃碎片导致的产线停机,也杜绝识别错误带来的误报警,从而提升生产效率。

降成本

避免由于玻璃破碎造成的设备损坏,降低设备停机导致的误工成本,也降低了设备的维修成本。

升品质

减少由于表面的划痕、脏污影响电路生产、液晶成像,导致产品品质问题。

提工艺

通过质检数字化,提升数据溯源分析能力,对于提高生产工艺提供有力保障。

液晶屏幕外观缺陷检测方案

6be8cdf893504237fba5d13c5043569e.png

采用线阵相机、镜头,根据检测需求项,选择搭配背光源、同轴光或高亮线光源对液晶面板图像进行采集,在扫描图片的过程中,智能算法同时处理图像,实时显示面板的缺陷信息,判断表面是否有异物、划伤、异色、凸包、凹痕、针孔、毛边、亮点,对于有缺陷的玻璃,实时联动主设备进行停止等相关操作,防止在生产过程中因玻璃碎裂导致主设备停机。

机器视觉检测流程设计:

1、将产品打开成180°,将LCD屏水平放置在载物台上;

2、开始检测:载物台移动,相机开始采集图像;

3、采集结束后,载物台复位;

4、检测软件:分析LCD屏质量情况;

5、根据分析结果给出产品的OK、NG评判结果;

6、操作员:根据结果进行分仓操作和复检操作;

A)视觉检测异常之黑点

e8aec8ff5a7eee24fe3a1ae84893b4fd.jpeg

B)视觉检测异常之异物

9aae5c3d479cfcbe1c5265f3998968a3.jpeg

C)视觉检测异常之划伤

575de28c7171919e65f0ab66b6d54913.png

D)视觉检测异常之气泡

0a5945e701db5eae81701698ea6d9e5a.png

E)视觉检测异常之异物

62d5c702dd533df66a3a65c6267dcdff.jpeg

本文仅做学术分享,如有侵权,请联系删文。

干货下载与学习

后台回复:巴塞罗那自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进4.国内首个面向工业级实战的点云处理课程5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

16.基于Open3D的点云处理入门与实战教程

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

c42ad95c69d5e1fafc93b67e829d6767.jpeg

▲长按加微信群或投稿,加微信:dddvision

4f9c03e7dd33d4b4c5e9a133bf31295b.jpeg

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近6000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

68de7649d8284a7c560ed72960f69f8e.jpeg

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有