超全的金属材料力学性能及试验介绍汇总 您所在的位置:网站首页 最低抗拉强度 超全的金属材料力学性能及试验介绍汇总

超全的金属材料力学性能及试验介绍汇总

2023-07-27 14:33| 来源: 网络整理| 查看: 265

应变:是被测试材料尺寸的变化率,它是加载后应力引起的尺寸变化。由于应变是一个变化率,所以它没有单位。

原始标距(Lo):施力前的试样标距。

断后标距(Lu):试样断裂后的标距。

平行长度(Lc):试样两头部或两夹持部分(不带头试样)之间平行部分的长度。

断后伸长率(A):是断后标距的残余伸长(Lu-Lo)与原始标距(Lo)之比的百分率。

断面收缩率(Z):断裂后试样横截面积的最大缩减量(So-Su)与原始横截面积(So)之比的百分率。

最大力(Fm):试样在屈服阶段之后所能抵抗的最大力。

屈服强度:当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点。

上屈服强度:试样发生屈服而力首次下降前的最高应力。

下屈服强度:在屈服期间,不计初始瞬时效应时的最低应力。

1.1.3 拉伸应力-应变曲线

以低碳钢的拉伸应力—应变曲线为例。

OB—弹性阶段,BC—屈服阶段

CD—强化阶段,DE—颈缩阶段

试样在各阶段变化的示意图

弹性阶段

金属材料在弹性变形阶段,其应力和应变成正比例关系,符合胡克定律,即 σ= E·ε,其比例系数E称为弹性模量。

弹性极限σp与比例极限σe非常接近,工程实际中近似地用比例极限代替弹性极限。

屈服阶段

屈服强度:当金属材料呈现屈服现象时,在试验期间达到塑性变形发生而力不增加的应力点,应区分上屈服强度和下屈服强度。通常把下屈服点对应的应力值称为屈服强度。

强化阶段

经过屈服阶段后,曲线从C点又开始逐渐上升,说明要使应变增加,必须增加应力,材料又恢复了抵抗变形的能力,这种现象称作强化,CD段称为强化阶段(加工硬化)。

曲线最高点所对应的应力值记作,称为材料的抗拉强度(或强度极限),它是衡量材料强度的又一个重要指标。 强度极限是材料在整个拉伸过程中所能承受的最大拉力。

颈缩阶段

曲线到达D点,在试件比较薄弱的某一局部(材质不均匀或有缺陷处),变形显著增加,有效横截面急剧减小,出现了缩颈现象。此后,试件的轴向变形主要集中在颈缩处,试件最后在颈缩处被拉断。

a是低碳钢的应力-应变曲线,它有锯齿状的屈服阶段,分上下屈服,均匀塑性变形后产生缩颈,然后试样断裂;

b是中碳钢的应力-应变曲线,它有屈服阶段,但波动微小,几乎成一条直线,均匀塑性变形后产生缩颈,然后试样断裂。

c是淬火后低、中温回火钢的应力-应变曲线,它无可见的屈服阶段,均匀塑性变形后产生缩颈,然后试样断裂;

d是铸铁、淬火钢等较脆材料的应力-应变曲线,它不仅无屈服阶段,而且在产生少量均匀塑性变形后就突然断裂。

1.1.4 拉伸试样形状及尺寸

拉伸试样的一般形状

需要加工制样:压制坯、铸锭、无恒定截面的产品;

不需加工制样:有恒定横截面的型材、棒材、线材、铸造试样;

横截面的形状:圆形、矩形、多边形、环形,其他形状;

试样的原始标距:

比例试样 Lo=kSo1/2 (短比例试样:k=5.65;长比例试样:k=11.3)

非比例试样Lo与So1/2 无关

圆形横截面拉伸试样的形状和尺寸符号

比例试样尺寸

原始直径d0:3、5、6、8、10、15、20、25,优先采用5、10、20mm

原始标距L0≥15mm,短试样(优先)L0=5d0,长试样L0=10d0

平行长度LC ≥ L0+d0/2 ,仲裁试验:LC=Lo+2d0

试样总长度 Lt 取决于夹持方法,原则上Lt>Lc+4d0

过渡圆半径r≥0.75d0

矩形横截面拉伸试样的形状和尺寸符号

矩形截面非比例试样

原始厚度b0>3mm

原始标距L0:短试样(优先) L0=5.65s01/2 ,长试样L0=11.3s01/2 ;若L0上贝氏体>铁素体>下贝氏体>回火马氏体。

球化处理可改善钢的韧性;在某些马氏体钢中存在奥氏体,可以抑制解理断裂;钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响,无论第二相位于晶界还是独立于基体中,当尺寸增大时材料韧性下降,tk升高。

3.11 相关标准

04

材料在变动载荷下的力学性能

4.1 概述

工程中很多机件和构件都是在变动载荷下工作,如曲轴、连杆、齿轮、弹簧、辊子、叶片及桥梁等,其失效形式主要是疲劳断裂。

疲劳是指机件和构件在服役过程中,由于承受变动载荷而导致裂纹萌生和扩展以致断裂失效的全过程。变动载荷是引起疲劳破坏的外力,是指载荷大小甚至方向均随时间变化的载荷,其在单位面积上的平均值为变动应力。变动应力分为循环应力和无规则随机变动应力。循环应力的波形有正弦波、矩形波和三角形波等。

疲劳的特点:疲劳是具有寿命的断裂,其断裂应力水平往往低于材料抗拉强度,甚至低于屈服强度;疲劳是脆性断裂(突发性);对缺陷(缺口、裂纹及组织缺陷)十分敏感。

在载荷下进行试验以提供材料或零部件的某种疲劳数据的试验称为疲劳试验。疲劳试验按失效循环次数可分为高周疲劳试验和低周疲劳试验。高周疲劳试验以应力为基本控制参数,低周疲劳试验以应变为基本控制参数。疲劳试验按载荷和环境可分为室温疲劳试验、高温疲劳试验、低温疲劳试验、热疲劳试验、腐蚀疲劳试验、接触疲劳试验和冲击疲劳试验。

4.2 疲劳断口

疲劳断裂经历了裂纹萌生和扩展过程。由于应力水平较低,因此具有较明显的裂纹萌生和稳态扩展阶段,疲劳断裂的宏观断口一般由三个区域组成,即疲劳裂纹产生区(裂纹源)、裂纹扩展区和最后断裂区。

疲劳裂纹扩展速率曲线

I区:裂纹初始扩展阶段,10-8~10-6mm/周次,快速提高,但△K变化范围很小所以提高有限;

II区:裂纹扩展主要阶段,10-5~10-2mm/周次,da/dN~△K呈幂函数关系,△K变化范围很大,扩展寿命长。

Ⅲ区:裂纹扩展最后阶段,da/dN很大,并随△K增加而很快地增大,只需扩展很少周次即会导致材料失稳断裂。

疲劳源

该区最光亮(该断面经多次摩擦挤压);裂纹源位于裂纹扩展区的贝纹弧线凹向一侧的焦点位置;可以有一个或者多个(与应力状态有关);对于多个裂纹源,一般源区越亮、裂纹扩展区越大、贝纹线越密,则该裂纹源越早产生。

疲劳区

是裂纹亚稳扩展形成的区域;断口比较光滑并分布有贝纹线(或海滩花样),有时还有裂纹扩展台阶;贝纹线是载荷变动引起的,贝纹线是一簇以裂纹源为圆心的平行弧线,近源处则贝纹线距越密,远离源处则贝纹线距越疏。

瞬断区

是裂纹失稳扩展形成的区域;该断口区比疲劳区粗糙,与静载的断口相似(脆性材料断口呈结晶状,韧性材料断口在心部平面应变区呈放射状或人字纹状,边缘平面应力区则有剪切唇区存在);位置一般处于裂纹源的对侧;区域大小与材料承受名义应力及材料性质有关,高名义应力或低韧性材料,最后断裂区大,反之,最后断裂区小。

4.3 疲劳曲线与疲劳极限

疲劳曲线是疲劳应力与疲劳寿命的关系曲线,即S-N曲线,用于确定疲劳极限、建立疲劳应力判据的基础。

典型的金属材料疲劳曲线

疲劳极限指材料抵抗无限次应力循环而不断裂的强度指标。条件疲劳极限指材料抵抗有限次应力循环而不断裂的强度指标。二者统称为疲劳强度。

对称循环载荷是一种常规载荷,有对称弯曲、对称扭转及对称拉压等。其对应的疲劳极限称为σ-1、τ-1、σ-1p。其中σ-1是最常用的对称循环疲劳极限。

抗拉强度越大,疲劳极限越大。

钢的疲劳极限σ-1与抗拉强度σb的关系

4.4 疲劳试验方法

金属材料疲劳极限试验,是通过模拟结构或部件的实际工作情况,在试验室内测定材料的疲劳曲线,用以估计结构或部件的疲劳特性。

一般该类试验周期较长,所需设备比较复杂,但是由于一般的力学试验如静力拉伸、硬度和冲击试验,都不能够提供材料在反复交变载荷作用下的性能,因此对于重要的零构件进行疲劳试验是必须的。

常用试验方法及其特点

单点疲劳试验法

单点疲劳试验法适用于金属材料构件在室温、高温或腐蚀空气中旋转弯曲载荷条件下服役的情况。

试验设备:弯曲疲劳试验机、抗压试验机。

试样要求:(1)试样数量为8 ~ 10根;试样尺寸要求最小截面直径d一般取6,7.8,9mm,偏差小于0.005d。

试样形状示意图

试验步骤:(1)安装试样;(2施加载荷P(一般是根据材料的抗拉强计算出应该施加的载荷大小P),第1根试样的最大应力约为σ1=(0.6 ~0.7)σb;(3)试样断裂后记下寿命N1,取下试样描绘疲劳断口的特征;(4)取另一试样使其最大应力σ2=(0.40 ~0.45)σb ,重复步骤①到③测得疲劳寿命N2,若N2<107次,则应降低应力再重复步骤①到③,直至N2>107次;(5)在σ1与σ2之间插入4个等差应力水平,分别为σ3,σ4,σ5,σ6,逐级递减进行以上试验,相应的寿命分别为N3,N4,N5,N6。

数据处理:当N6<107次,疲劳极限在σ2与σ6之间,这时取σ7=1/2(σ2+σ6)再进行试验;当N6>107次,取σ7=1/2(σ5+σ6)再进行试验。

升降法疲劳试验

升降法疲劳试验主要用于测定中、长寿命区材料或结构疲劳强度的随机特性。在常规疲劳试验方法测定疲劳强度的基础上或在指定寿命的材料或结构的疲劳强度无法通过试验直接测定的情况下,一般采用升降法疲劳试验间接测定疲劳强度。

试验设备:抗压疲劳试验机。

试样形状示意图

(试样数量:约16根)

升降法示意图

试验方法:(1)试验从高于疲劳强度的应力水平开始,然后逐级降低(如疲劳强度未知,可选用材料的静态拉伸屈服强度Rp0.2或ReL);(2)在应力水平下进行第一根试验,如果在指定寿命N=107次之前发生破坏,则下一根试样就要在低一级的应力水平下进行,反之,则要在高一级的应力水平下进行,直至完成全部试样;(3)各级应力水平之差叫做“应力增量”,在整个试验过程中,应力增量应保持不变。

试样步骤:(1)安装试样;(2)参数设置,在电脑界面设置试验参数,如动载荷、频率、循环次数、试样工作部分的直径和横截面积等;(3)施加载荷,所施加的动载荷一般为对称循环应力,波形为正弦波;(4)终止试验,试样在规定循环应力下,通常一直连续试验至试样失效或规定循环次数。

数据处理:将出现第一对相反结果以前的数据舍弃;以Vi表示在第i级应以水平σi下进行的试验次数,n表示有效试验总次数,m表示升降应力水平的级数。

高频振动疲劳试验法

高频振动试验利用试验器材产生含有循环载荷频率为1000Hz左右特性的交变惯性力作用于疲劳试样上,可以满足在高频、低幅、高循环环境条件下服役金属材料的疲劳性能研究。高频振动试验主要用于军民机械工程的需要。

高频振动试验装置示意图

试样要求:试样形状同单点疲劳试样相同;试样材料一般选用高强度钢。

试验步骤:(1)安装试样;(2)安装控制与测量的加速度传感器,并进行500~2000Hz的正弦扫频试验,根据扫频结果选取试验频率;(3)以选取的试验频率、控制加速度进行正弦高频振动环境疲劳试验,调整试验应力水平为σ=ma/S。(m为配重质量,a为配重的加速度,S为试样横截面积)

数据处理:将获得的试验数据以试验应力σ为纵坐标,以疲劳寿命的对数lgN为横坐标,由如下公式按照最小二乘法拟合直线的原理,使各数据点到直线的水平距离的平方和为最小:lgN=a+b(σ-σ0)。

超声波疲劳试验

超声法疲劳试验是一种加速共振式的疲劳试验方法,其测试频率(20kHz)远远超过常规疲劳测试频率(小于200Hz)。超声法疲劳试验一般用于超高周疲劳试验,主要针对109以上周次疲劳试验。

试验装置主要包括:(1)超声频率发生器(将超声正弦波电信号由50Hz转变为20kHz);(2)压力陶瓷换能器(将电源提供的电信号转化成机械振动信号);(3)位移放大器(放大位移振幅使试样获得所需的应变振幅)。试验装置原理:由压电陶瓷换能器、位移放大器和试样组成的超声疲劳试验机构成了一个力学振动系统,试样的加载是由外加信号激励试样发生谐振,在试样中产生谐振波来实现。

超声法疲劳试验装置示意图

试样分为拉压试样和三点弯曲试样。

试样示意图

试验步骤:(1)对试样进行测量校准;(2)安装试样,对称拉压试验中,试样的一端固定放大器末端,另一端自由,非对称拉压试验中,试样两端分别固定在两个放大器;(3)对所加载荷和试验频率进行参数设置;(4)开始试验,并记录数据。

数据处理:试验数据用Basquin方程描述:σa=σf ’(2Nf)bλ。其中σa表示应力幅,σf表示应表示疲劳强度系数,Nf表示试验所得疲劳寿命,以Nf为横坐标,以σa为纵坐标绘制超声疲劳S-N曲线。

4.5 相关标准

05

材料在环境条件下的力学性能

前几节主要介绍材料在外力作用下所表现的力学行为规律,实际工程结构或零件,都是在一定环境或介质下工作,材料在环境介质中的力学行为是介质和应力共同作用的结果。本节主要介绍应力腐蚀的试验方法。

5.1 概述

应力腐蚀是指材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。应力腐蚀是危害最大的腐蚀形态之一。

应力腐蚀断裂(stress corrosion cracking, SCC)是一种“灾难性的腐蚀”,如桥梁坍塌,飞机失事,油罐爆炸,管道泄漏都造成了巨大的生命和财产损失。

5.2 应力腐蚀条件和特征

应力腐蚀产生的条件:敏感的金属材料、特定的腐蚀介质、足够大的应力。

敏感材料:一般情况纯金属不会发生SCC,含杂质的或者合金才能发生SCC;高强度合金钢腐蚀开裂抗力受化学成分和显微组织控制;

特定介质:特定组织环境(包括腐蚀介质性质、浓度、温度),特定材料对于特定的溶液介质,才能发生应力腐蚀。例如,奥氏体不锈钢—Cl离子溶液、低合金高强度钢—潮湿大气中。

应力来源:机件所承受的应力包括工作应力和残余应力。工作状态下构件所承受的外加载荷形成的抗力;加工,制造,热处理引起的内应力;装配,安装形成的内应力;温差引起的热应力;裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。

不同合金腐蚀介质表

应力腐蚀特征:典型的滞后破坏;裂纹分为晶间型、穿晶型和混合型;裂纹扩散速度比均匀腐蚀快约106倍;低应力的脆性断裂。

滞后破坏

孕育期:裂纹萌生阶段,即裂纹源成核所需时间,约占整个时间的90%左右;

裂纹扩展期:裂纹成核→临界尺寸;

快速断裂期:裂纹达到临界尺寸后,由纯力学作用裂纹失稳瞬间断裂。

整个断裂时间与材料、介质、应力有关(短则几分钟,长可达若干年,应力降低,断裂时间延长。

临界应力σth(临界应力强度因子KISCC),在此临界值以下,不发生SCC。

裂纹形态

SCC裂纹分为三种:晶间型、穿晶型、混合型。晶间型:裂纹沿晶界扩展,如软钢、铝合金、铜合金、镍合金;穿晶型:裂纹穿越晶粒扩展,如奥氏体不锈钢、镁合金;混合型:钛合金。

裂纹的途径取决于材料与介质。同一材料因介质变化,裂纹途径也可能改变。

应力腐蚀裂纹的主要特点是:裂纹起源于表面;裂纹的长宽不成比例,相差几个数量级;裂纹扩展方向一般垂直于主拉伸应力的方向;裂纹一般呈树枝状。

裂纹扩展方向与应力方向(垂直)

裂纹扩展速度

应力腐蚀裂纹扩展速率的特点:扩展速度较快;10-6~10-3mm/min;比均匀腐蚀快约106倍;仅为纯机械断裂速度的10-10。

应力腐蚀裂纹的da/dt-K1

当裂纹尖端的KI>KISCC时,裂纹就会不断扩展。单位时间内裂纹的扩展量叫做应力腐蚀裂纹扩展速率,用da/dt表示。裂纹的扩展速率da/dt随着应力强度因子K1而变化。

I区:当K1稍大于K1SCC时,裂纹经过一段孕育突然加速发展,即在I区内,裂纹生长速率对K1较敏感;

II区:da/dt与K1无关,通常说的裂纹扩展速率就是指该区速率,因为它主要由电化学过程控制,较强烈地依赖于溶液的pH值,粘度和温度;

Ⅲ区:失稳断裂区,裂纹深度已接近临界尺寸acr , 当超过这个值时,应力强度因子达到K1c时,裂纹生长率迅速增加直至发生失稳断裂。

低应力的脆性断裂

应力腐蚀破坏的断口,断口表面颜色暗淡,腐蚀坑和二次裂纹;应力腐蚀引起的断裂可以是穿晶断裂,也可以是沿晶断裂。如果是穿晶断裂,其断口是解理或准解理的,其裂纹有似人字形或羽毛状的标记。

沿晶断裂图

穿晶断裂图

5.3 应力腐蚀影响因素

应力腐蚀影响因素——环境、电化学、力学、冶金。

应力腐蚀影响因素示意图

5.4 应力腐蚀防治措施

方面 措施 选材 根据材料的具体使用环境,尽量避免使用对SCC敏感的材料; 消除应力 改进结构设计,减小应力集中和避免腐蚀介质的积存;在部件的加工、制造和装配过程中尽量避免产生较大的残余应力;可通过热处理、表面喷丸等方法消除残余应力; 涂层 使用有机涂层可将材料表面与环境分开;使用对环境不敏感的金属作为敏感材料的镀层; 改善介质环境 控制或降低有害的成分;在腐蚀介质中加入缓蚀剂;通过改变电位、促进成膜、阻止氢或有害物质的吸附等,影响电化学反应动力学而起到缓蚀作用,改变环境的敏感;性质; 电化学保护 金属发生SCC与电位有关。有些体系存在一个临界断裂电位值,通过电化学保护使金属离开SCC敏感区,从而抑制SCC

06

材料在高温条件下的力学性能

6.1 概述

高温下金属及合金中出现的扩散、回复、再结晶等现象,会使其组织发生变化。金属材料长时间暴露在高温下,也会使其性能受到破坏。

在高压蒸汽锅炉、汽轮机、柴油机、航空发动机、化工设备中高温高压管道等设备中,很多机件长期在高温下服役。对于这类机件的材料,只考虑常温短时静载时的力学性能还不够。

如化工设备中高温高压管道,虽然承受的应力小于该工作温度下材料的屈服强度,但在长期使用过程中会产生连续的塑性变形,使管径逐步增大,甚至会导致管道破裂。

温度的“高”或“低”是相对该金属的熔点来讲的,一般采用约比温度T/Tm(Tm表示材料熔点),T/Tm>0.4~0.5,则算是高温。

民用机接近1500℃,军用机在2000℃左右,航天器的局部工作温度可达2500℃

6.2 影响因素

温度对材料的力学性能影响很大。在高温下载荷持续时间对力学性能也有很大影响。

材料的高温力学性能≠室温力学性能

一般随温度升高,金属材料的强度降低而塑性增加。

载荷持续时间的影响:σ< σs,长期使用过程中,会产生蠕变,可能最终导致断裂;随载荷持续时间的延长,高温下钢的抗拉强度降低;在高温短时拉伸时,材料的塑性增加;但在长时载荷作用下,金属材料的塑性却显著降低,缺口敏感性增加,往往呈现脆性断裂;温度和时间的联合作用还影响材料的断裂路径。

温度升高时,晶粒强度和晶界强度均会降低,但是由于晶界上原子排列不规则,扩散容易通过晶界进行,因此,晶界强度下降较快。

晶粒与晶界两者强度相等的温度称为“等强温度”TE。

当材料在TE以上工作时,材料的断裂方式由常见的穿晶断裂过渡到晶间断裂。材料的TE不是固定不变的,变形速率对它有较大影响。因晶界强度对形变速率敏感性比晶粒大得多,因此TE随变形速度增加而升高。

综上所述,研究材料在高温下的力学性能,必须加入温度和时间两个因素。

6.3 蠕变现象

金属在长时间恒温、恒载荷(即使应力小于该温度下的屈服强度)作用下缓慢地产生塑性变形的现象称为蠕变。

由蠕变变形导致的材料的断裂,称为蠕变断裂。

蠕变在低温下也会产生,但只有当约比温度大于0.3时才比较显著。如碳钢超过300℃、合金钢超过400℃时就必须考虑蠕变的影响。

同种材料的蠕变曲线随应力的大小和温度的高低而不同。

典型的蠕变曲线

第一阶段ab为减速蠕变阶段又称过渡蠕变阶段,这一阶段开始的蠕变速率很大,随着时间延长蠕变速率逐渐减小,到b点蠕变速率达到最小值;

第二阶段bc为恒速蠕变阶段又称稳态蠕变阶段,这一阶段的特点是蠕变速率几乎保持不变。一般所指的金属蠕变速率,就是以这一阶段的蠕变速率ε表示的。

第三阶段cd为加速蠕变阶段随着时间的延长,蠕变速率逐渐增大,到d点时产生蠕变断裂。

应力、温度不同的蠕变曲线变化图

由图可见,当应力较小或温度较低时,蠕变第二阶段持续时间较长,甚至可能不产生第三阶段;相反,应力较大或温度较高时,蠕变第二阶段很短,甚至完全消失,试样很短时间内断裂。

6.4 蠕变断裂断口特征

断口宏观特征

断口附近产生塑性变形,在变形区附近有很多裂纹(断裂机件表面出现龟裂现象);

高温氧化,断口表面被一层氧化膜所覆盖。

断口微观特征

冰糖状花样的沿晶断裂形貌

6.5 性能指标及测定

材料的蠕变性能常采用蠕变极限、持久强度、松弛稳定性等力学性能指标。

6.5.1 蠕变极限

蠕变极限是金属材料在高温长时载荷作用下的塑性变形抗力指标,是高温材料、设计高温下服役机件的主要依据之一。

蠕变极限(MPa)表示方法有两种,一种是在规定温度下,使试样在规定时间内产生规定稳态蠕变速率的最大应力;一种是在规定温度和时间下,使试样在规定时间内产生规定蠕变伸长率的最大应力。

示例1表示在温度为500℃、稳态蠕变速率为1×10-5%/h时该材料的蠕变极限为80MPa;

示例2表示在温度为500℃、10万小时、蠕变伸长率为1%时该材料的蠕变极限为100 MPa。

蠕变测试设备及示意图

在同一温度、不同应力条件下进行蠕变试验,测出不少于4条蠕变曲线,根据测定结果作出蠕变曲线,曲线上直线部分的斜率即是蠕变速率;

根据获得的应力-蠕变速率数据,在对数坐标上作出关系曲线;

可采用较大的应力,以较短的试验时间作出几条蠕变曲线,根据所测定的蠕变速率,用内插法或外推法求出规定蠕变速率的应力值,即得到蠕变极限。

同一温度下,蠕变第二阶段应力σ与稳态蠕变速率ε之间,在双对数坐标中呈线性经验关系。

S-590合金的σ-ε曲线

(20.0% Cr, 19.4 %Ni, 19.3%Co, 4.0%W, 4.0%Nb, 3.8%Mo, 1.35%Mn, 0.43%C)

6.5.2 持久强度

持久强度是指材料在高温长时载荷作用下抵抗断裂的能力,即材料在一定温度和时间条件下,不发生蠕变断裂的最大应力(蠕变极限指材料的变形抗力,持久强度表示材料的断裂抗力)。

某些材料与机件,蠕变变形很小,只要求在使用期内不发生断裂(如锅炉的过热蒸汽管)。这时,就要用持久强度作为评价材料、机件使用的主要依据。

S-590合金持久强度曲线

金属材料的持久强度是通过做高温拉伸持久试验测定的;

试验过程中,不需要测定试样的伸长量,只要测定试样在规定温度和一定应力作用下直至断裂的时间;

对于设计寿命较长(数万~数十万小时以上)的机件,长时间试验十分困难,所以一般作出应力较大、断裂时间较短的试验数据,采用外推法求出材料的持久强度。

外推经验公式:t=Aσ-B

(t—断裂时间,σ—应力,A、B—与试验温度及材料有关的常数)

对上面公式取对数,得到:

logt=logA-Blogσ

作出logt-logσ图,由直线关系可从断裂时间短的数据,外推到长时间的持久强度。

6.5.3 剩余应力

材料在恒变形条件下,随着时间的延长,弹性应力逐渐降低的现象称为应力松弛。

金属材料抵抗应力松弛的性能称为松弛稳定性,可以通过应力松弛试验测定的应力松弛曲线来评定。

剩余应力是评定金属材料应力松弛稳定性的指标。

剩余应力越高,松弛温度性越好。

应力松弛曲线

第1阶段:开始阶段应力下降很快;

第2阶段:应力下降逐渐减缓的阶段;

松弛极限:在一定的初应力和温度下,不再继续发生松弛的剩余应力。

6.5.4 高温力学性能的影响因素

由蠕变变形和断裂机理可知,要提高蠕变极限,必须控制位错攀移的速率;提高持久强度,则必须控制晶界的滑动和空位扩散。

高温力学性能的影响因素:化学成分、冶炼工艺、热处理工艺、晶粒度。

合金化学成分的影响

耐热钢及合金的基体材料一般选用熔点高、自扩散激活能大或层错能低的金属及合金。熔点越高的金属(Cr、W、Mo、Nb),自扩散越慢;

层错能低,易形成扩展位错,位错难以交滑移、攀移;

弥散相能强烈阻碍位错的滑移、攀移;

能增加晶界扩散激活能的添加元素(如硼及稀土),既能阻碍晶界滑动,又增大晶界裂纹的表面能;

面心立方结构的材料比体心立方结构的高温强度大。

冶炼工艺的影响

降低夹杂物和冶金缺陷的含量;

通过定向凝固工艺,减少横向晶界,提高持久强度,因为在横向晶界上容易产生裂纹。

热处理工艺的影响

珠光体耐热钢一般采用正火+高温回火工艺。回火温度应高于使用温度100~150℃以上,以提高其在使用温度下的组织稳定性;

奥氏体耐热钢或合金一般进行固溶和时效处理,使之得到适当的晶粒度,并改善强化相的分布状态;

采用形变热处理改变晶界形状(形成锯齿状),并在晶内形成多边化的亚晶界,可使合金进一步强化。

晶粒度的影响

晶粒大小:使用温度<等强温度时,细晶粒钢有较高的强度,反之使用温度>等强温度时,粗晶粒钢有较高的蠕变抗力与持久强度;

晶粒度不均匀:在大小晶粒交界处出现应力集中,裂纹就易于在此产生而引起过早的断裂。

6.6 相关标准

7

材料的磨损性能

7.1 概述

磨损是由于机械作用、化学反应(包括热化学、电化学和力化学等反应),材料表面物质不断损失或产生残余变形和断裂的现象。

磨损是发生在物体上的一种表面现象,其接触表面必须有相对运动。磨损必然产生物质损耗(包括材料转移),而且它是具有时变特征的渐进的动态过程。

磨损的危害:(1)影响机器的质量,减低设备的使用寿命,如齿轮齿面的磨损、机床主轴轴承磨损等;(2)降低机器的效率,消耗能量,如柴油机缸套的磨损等;(3)减少机器的可靠性,造成不安全的因素,如断齿、钢轨磨损;(4)消耗材料,造成机械材料的大面积报废。

磨损曲线

跑和阶段:表面被磨平,实际接触面积不断增大,表面应变硬化,形成氧化膜,磨损速率减小;

稳定磨损阶段:斜率就是磨损速率,唯一稳定值;大多数机件在稳定磨损阶段(AB段)服役;

剧烈磨损阶段:随磨损的增长,磨耗增加,表面间隙增大,表面质量恶化,机件快速失效。

7.2 磨损的评定

磨损时零件表面的损坏是材料表面单个微观体积损坏的总和。目前对磨损评定方法还没有统一的标准。这里主要介绍三种方法:磨损量、耐磨性和磨损比。

磨损量分为长度磨损量Wl、体积磨损量Wv、重量磨损量Ww。

耐磨性是指在一定工作条件下材料耐磨损的特性。耐磨性使用最多的是体积磨损量的倒数。

材料耐磨性分为相对耐磨性和绝对耐磨性两种。材料的相对耐磨性ε是指两种材料A与B在相同的外部条件下磨损量的比值,其中材料之一的A是标准(或参考)试样。

εA=WA/WB

磨损比用于度量冲蚀磨损过程中的磨损。(磨损比=材料的冲蚀磨损量/造成该磨损量所用的磨料量)

7.3 磨损类型

磨损按磨损机理可分为粘着磨损、磨粒磨损、疲劳磨损、腐蚀磨损、冲蚀磨损、微动磨损,按环境介质可分为干磨损、湿磨损、流体磨损。

7.3.1 粘着磨损

当摩擦副相对滑动时, 由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。

磨损过程:粘着→剪断→转移→再粘着。

粘着磨损示意图

粘着磨损类别、现象及原因

粘着磨损的影响因素

(1)摩擦副材料性质的影响

脆性材料比塑料材料的抗粘着能力高;

相同金属或互溶性大的材料摩擦副易发生粘着磨损,反之则不易发生粘着磨损;

多相金属也不容易发生粘着磨损;

表面处理可以减小粘着磨损;

硬度高的金属比硬度低的金属抗粘着能力强。

(2)载荷与速度的影响

载荷增加——粘着磨损加剧,但是有一个临界载荷;

在压力一定的情况下,粘着磨损随滑动速度的增加而增加,在达到某一极大值后,又随着滑动速度的增加而减少。

(3)表面温度的影响

表面温度升高可使润滑膜失效,使材料硬度下降,摩擦表面容易产生粘着磨损。

(4)润滑油、润滑脂的影响

在润滑油、润滑脂中加入油性或极压添加剂能提高润滑油膜吸附能力及油膜强度,能成倍地提高抗粘着磨损能力。

粘着磨损的改善措施:提高硬度、采用互溶性小的金属、耐磨镀层、加油性和极压添加剂。

7.3.2 磨粒磨损

外界硬颗粒或者对磨表面上的硬突起物或粗糙峰在摩擦过程中引起表面材料脱落的现象,称为磨粒磨损(又称磨料磨损)。磨粒是摩擦表面互相摩擦产生或由介质带入摩擦表面。

磨粒磨损是最普遍的一种形式,主要出现在采矿、钻探、建筑、运输与农业等机械相关零部件,据统计,工业中磨粒磨损造成的损失约占总的50%左右。

磨粒磨损的影响因素

磨砺磨损的改善措施:(1)对于以切削作用为主要机理的磨粒磨损应增加材料硬度;(2)根据机件的服役条件,合理选择相应的耐磨材料;(3)采用渗碳、渗氮共渗等化学热处理提高表面硬度;(4)机件的防尘和清洗。

7.3.3 疲劳磨损

两接触表面作纯滚动或滚动与滑动复合摩擦时,在高接触压应力的作用下,经过多次应力循环后,在其相互作用表面的局部地区产生小块材料剥落,形成麻点或凹坑,这种磨损称为疲劳磨损,又称为接触疲劳。

疲劳磨损与材料疲劳破坏的主要区别:磨损的产生与摩擦力有关;磨损往往发生在材料的表层或次表层。

疲劳磨损类型:麻点剥落、浅层剥落、深层剥落。

麻点剥落: 是指深度在0.1~0.2mm以下的小块剥落,裂纹一般起源于表面,剥落坑呈针状或痘状。

浅层剥落: 其剥落深度一般为0.2~0.4 mm。多出现在机件表面粗糙度低、相对滑动小的场合。

深层剥落: 这类剥落坑较深(>0.4mm)、块大。一般发生在表面强化的材料中,如渗碳钢中。

疲劳磨损影响因素

疲劳磨损的改善措施:提高摩擦面硬度、采用表面强化工艺、提高冶金质量、减少缺陷、提高润滑剂粘度、增大膜厚比,消除水分。

7.3.4 腐蚀磨损

材料在摩擦过程中与周围的介质发生化学或电化学反应而引起的物质从表面损失的现象,称为腐蚀磨损。

腐蚀磨损按腐蚀介质的性质,腐蚀磨损可分为两类,即化学腐蚀磨损和电化学腐蚀磨损。化学腐蚀磨损指金属材料在气体介质或非电解质溶液中的磨损,其中最重要的一种是氧化磨损。电化学腐蚀磨损指金属材料在导电性电解质溶液中的磨损。

氧化磨损指金属表面与气体介质发生氧化反应,在表面生成氧化膜,随后在磨料或微凸体作用下被去除,新暴露的表面又重新被氧化、磨去的过程中形成的磨损。

氧化磨损条件:摩擦表面氧化的速率大于氧化膜被磨损的速率,氧化膜与基体结合的强度大于摩擦表面的剪切应力,氧化膜厚度大于表面磨损破坏的深度。

氧化磨损影响因素:氧化膜性质、载荷、滑动速度、金属表面状态。

电化学腐蚀磨损是指摩擦副工作在电解质溶液(如酸、碱、盐等)中,并和它们发生作用形成各种不同的产物,又在摩擦中被去除的过程。

摩擦表面遍布点状或丝状腐蚀痕迹,磨损产物是酸、碱、盐的金属化合物。

电化学腐蚀磨损的影响因素:(1)腐蚀介质的性质,同种材质在不同介质中的腐蚀磨损行为是不同的,另外,介质浓度、pH值和温度也会影响腐蚀磨损;(2)材料性质,在强磨损—弱腐蚀条件下,含碳量提升——耐磨蚀性提高,反之在弱磨损—强腐蚀条件下则耐磨蚀性降低。不同热处理后钢的组织差异也会对钢的耐磨性有影响;(3)机械因素,外加载荷的大小及其作用频率也会对材料耐磨蚀性产生影响。

7.3.5 其他磨损形式

冲蚀磨损是指流体或固体颗粒以一定的速度和角度对材料表面进行冲击所造成的磨损。

根据颗粒及其携带介质的不同,冲蚀磨损又可分为气固冲蚀磨损、流体冲蚀磨损、液滴冲蚀和气蚀等。

对于冲蚀磨损通常采用涂抹预保护涂层,根据磨损情况的不同选择不同的保护层。主要有以下三种:采用耐磨涂层胶,耐磨修补剂进行预保护;采用耐磨陶瓷胶粘贴特种耐磨陶瓷片进行预保护;采用聚氨酯弹性涂层。

微动磨损指受压配合面在微小幅度的振动下发生的磨损现象,是一种复合磨损(粘着、磨粒、疲劳、腐蚀)。

金属表面的微动磨损原理示意图

微动磨损的控制措施:消除振动,增加接合面上的正压力,增大接合面间的摩擦力,采用良好的润滑,采用润滑脂,采用固体润滑剂。

7.4 磨损试验

测定材料抵抗磨损能力的一种材料试验。通过这种试验可以比较材料的耐磨性优劣。

磨损试验比常规的材料试验要复杂。首先需要考虑零部件的具体工作条件并确定磨损形式,然后选定合适的试验方法,以便使试验结果与实际结果较为吻合。

磨损试验方法比较

分类 特点 现场实物试验 实物试验结果可靠性大,但所需时间较长,且外界因素难于掌握和分析。 实验室试验 试验时间短、成本低且易于控制,但试验结果往往不能直接表明实验情况,又分为试样磨损试验和台架磨损试验。

磨损试验仪器:滚子式磨损试验机、环块磨损试验机、旋转圆盘一销式磨损试验机、往复式摩擦-磨损试验机、四球式摩擦-磨损试验机、接触疲劳试验机、湿磨科磨试验机。

磨损量的测量方法

方法 简介 称重法 测量磨损试验前后试样重量变化,其差数即为磨损量。常用感量是万分之一克的分析天平。 测长法 适用当精度的长度测量器对磨损试验前后的摩擦表面法向尺寸进行测量,其差数即为磨损量。 微观轮廓法 试验前后在摩擦表面上同一部位记录其微观轮廓起伏曲线,即测定同一部位轮廓线的试验前后变化量,来确定磨损量。 刻痕法 在磨损试样表面人为地做一个测量基准——凹痕,用试验前后测量凹痕的变化来确定磨损量。 化学分析法 利用化学分析来测定磨损试样摩擦偶件落在润滑剂中磨损产物的含量,间接测定磨损速度。 放射性同位素法 将摩擦表面经放射性同位素活化,定期测量落入润滑油中的磨屑额放射性强度,可换算磨损量随时间的变化。 铁谱方法 利用高梯度磁场将润滑油中的磁性磨屑分离出来分析,可用来对机器运转状态进行监控。

7.5相关标准

来源:材易通,ID:matlinkcn

免责声明:本公众号所载文章为本公众号原创或根据网络搜集编辑整理,文章版权归原作者所有。转载请注明来源;文章内容如有偏颇,敬请各位指正;如标错来源,请跟我们联系!返回搜狐,查看更多



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有