常用函数的傅里叶变换汇总 您所在的位置:网站首页 指数变换公式推导 常用函数的傅里叶变换汇总

常用函数的傅里叶变换汇总

2024-07-15 19:53| 来源: 网络整理| 查看: 265

快速链接: 【总目录】信号与系统 学习笔记 Signals and Systems with Python(1) 简介 Intro(2) 傅里叶 Fourier 常用函数的傅里叶变换汇总 (3) LTI 系统 与 滤波器 常用函数的傅里叶变换汇总

f ( t ) ⟵ ⟶ F ( j ω ) F ( j t ) ⟵ ⟶ 2 π f ( − ω ) f ( α t ) ⟵ ⟶ 1 ∣ α ∣ F ( j ω α ) a ⋅ f 1 + b ⋅ f 2 ⟵ ⟶ a ⋅ F 1 + b ⋅ F 2 f ( t ± t 0 ) ⟵ ⟶ e ± j ω t 0 F ( j ω ) f ( t ± t 0 ) ⟵ ⟶ ∣ F ( j ω ) ∣ e j [ φ ( ω ) ± ω t 0 ] e ∓ j ω 0 t f ( t ) ⟵ ⟶ F [ j ( ω ± ω 0 ) ] f 1 ( t ) ⋆ f 2 ( t ) ⟵ ⟶ F 1 ( j ω ) ⋅ F 2 ( j ω ) f 1 ( t ) ⋅ f 2 ( t ) ⟵ ⟶ 1 2 π F 1 ( j ω ) ⋆ F 2 ( j ω ) f ( n ) ( t ) ⟵ ⟶ ( j ω ) n F ( j ω ) ∫ − ∞ t f ( x ) d x ⟵ ⟶ π F ( 0 ) δ ( ω ) + F ( j ω ) j ω ( − j t ) n f ( t ) ⟵ ⟶ F ( n ) ( j ω ) π f ( 0 ) δ ( t ) + f ( t ) − j t ⟵ ⟶ ∫ − ∞ ω F ( j x ) d x e − α t ε ( t ) ⟵ ⟶ 1 α + j ω e − α ∣ t ∣ ⟵ ⟶ 2 α α 2 + ω 2 g τ ( t ) ⟵ ⟶ τ Sa ⟮ ω τ 2 ⟯ 1 ⟵ ⟶ 2 π δ ( ω ) δ ⟵ ⟶ 1 δ ′ ⟵ ⟶ j ω δ ( n ) ⟵ ⟶ ( j ω ) n ε ( t ) ⟵ ⟶ π δ ( ω ) + 1 j ω sgn ( t ) ⟵ ⟶ 2 j ω ↓ R ( τ ) ⟵ ⟶ E ( ω ) ↓ ∫ − ∞ ∞ f ( t ) f ( t − τ ) d t ⟵ ⟶ ∣ F ( j ω ) ∣ 2 ↓ R ( τ ) ⟵ ⟶ P ( ω ) ↓ lim ⁡ T → ∞ [ 1 T ∫ − T 2 T 2 f ( t ) f ( t − τ ) d t ] ⟵ ⟶ lim ⁡ T → ∞ ∣ F T ( j ω ) ∣ 2 T e j ω 0 t ⟵ ⟶ 2 π δ ( ω − ω 0 ) e − j ω 0 t ⟵ ⟶ 2 π δ ( ω + ω 0 ) cos ⁡ ( ω 0 t ) ⟵ ⟶ π [ δ ( ω + ω 0 ) + δ ( ω − ω 0 ) ] sin ⁡ ( ω 0 t ) ⟵ ⟶ j π [ δ ( ω + ω 0 ) − δ ( ω − ω 0 ) ] f T ( t ) ⟵ ⟶ F T ( j ω ) δ T ( t ) ⋆ f 0 ( t ) ⟵ ⟶ Ω δ Ω ( ω ) F 0 ( j ω ) δ T ( t ) ⋆ f 0 ( t ) ⟵ ⟶ Ω ∑ n = − ∞ ∞ F 0 ( j n Ω ) δ ( ω − n Ω ) ∑ n = − ∞ ∞ F n e j n Ω t ⟵ ⟶ 2 π ∑ n = − ∞ ∞ F n δ ( ω − n Ω ) \begin{aligned} \displaystyle f({\color{blue}t}) \longleftarrow& \longrightarrow F({\color{blue}j\omega}) \\ F(j t) \longleftarrow& \longrightarrow {\color{blue}2\pi }f(-\omega)\\ f({\color{blue}\alpha} t) \longleftarrow& \longrightarrow {\color{blue}\frac{1}{\lvert \alpha \rvert}}F(j\frac{\omega}{{\color{blue}\alpha}})\\ {\color{blue}a}\cdot f_1 + {\color{blue}b}\cdot f_2 \longleftarrow& \longrightarrow {\color{blue}a}\cdot F_1 + {\color{blue}b}\cdot F_2 \\ f(t {\color{blue}\pm t_0}) \longleftarrow& \longrightarrow {\color{blue}e^{\pm j \omega t_0}}F(j\omega)\\ f(t {\color{blue}\pm t_0}) \longleftarrow& \longrightarrow \lvert F(j\omega)\rvert {\color{blue}e^{j[\varphi(\omega)\pm \omega t_0]}}\\ {\color{blue}e^{\mp j\omega_0 t}}f(t)\longleftarrow& \longrightarrow F\big[j(\omega{\color{blue}\pm\omega_0})\big]\\ f_1(t) {\color{blue}\star} f_2(t) \longleftarrow& \longrightarrow F_1(j\omega){\color{blue}\cdot} F_2(j\omega)\\ f_1(t){\color{blue}\cdot} f_2(t) \longleftarrow& \longrightarrow {\color{blue}\frac{1}{2\pi}}F_1(j\omega){\color{blue}\star} F_2(j\omega)\\ f^{{\color{blue}(n)}} (t) \longleftarrow& \longrightarrow {\color{blue}(j\omega)^n} F(j\omega)\\ \int^{t}_{-\infty} f(x) dx \longleftarrow& \longrightarrow \pi F(0)\delta(\omega) + \frac{F(j\omega)}{j\omega}\\ {\color{blue}(-jt)^n} f (t) \longleftarrow& \longrightarrow F^{{\color{blue}(n)}}(j\omega)\\ \pi f(0)\delta(t) + \frac{f(t)}{{\color{red}-}jt} \longleftarrow& \longrightarrow \int^{\omega}_{-\infty}F(jx)dx\\ e^{-\alpha t} \varepsilon(t)\longleftarrow& \longrightarrow \frac{1}{\alpha + j\omega}\\ e^{-\alpha \lvert t\rvert} \longleftarrow& \longrightarrow \frac{2\alpha}{\alpha^2 + \omega^2} \\ g_{\color{blue}\tau}(t) \longleftarrow& \longrightarrow {\color{blue}\tau} \text{Sa} \Big\lgroup \displaystyle \frac{\omega{\color{blue}\tau}}{2} \Big\rgroup\\ {\color{red}1} \longleftarrow& \longrightarrow {\color{blue}2\pi}\delta{(\omega)}\\ {\color{red}\delta} \longleftarrow& \longrightarrow 1 \\ \delta^{\color{blue}\prime} \longleftarrow& \longrightarrow {\color{blue}j\omega} \\ \delta^{{\color{blue}(n)}} \longleftarrow& \longrightarrow (j\omega)^{\color{blue}n} \\ {\color{red}\varepsilon}(t)\longleftarrow& \longrightarrow \pi \delta(\omega) + \frac{1}{j\omega}\\ {\color{blue}\text{sgn}}(t)\longleftarrow& \longrightarrow \frac{2}{j\omega}\\ \downarrow R(\tau) \longleftarrow& \longrightarrow {\color{red}E}(\omega) \downarrow \\ {\int^{\infty}_{-\infty}f(t)f(t-\tau)dt} \longleftarrow& \longrightarrow \lvert F(j\omega) \rvert ^2\\ \downarrow R(\tau) \longleftarrow& \longrightarrow {\color{red}P}(\omega)\downarrow \\ \lim_{T\to\infty} \big[ \frac{1}{T} \int^{\frac{T}{2}}_{-\frac{T}{2}} f(t)f(t-\tau)dt \big] \longleftarrow& \longrightarrow \lim_{T\to\infty} \frac{\lvert F_T(j\omega)\rvert ^2}{T}\\ e^{j{\color{blue}\omega_0} t} \longleftarrow& \longrightarrow 2\pi \delta (\omega {\color{blue}- \omega_0}) \\ e^{-j\omega_0 t} \longleftarrow& \longrightarrow 2\pi \delta (\omega + \omega_0) \\ {\color{blue}\cos} ( \omega_0 t )\longleftarrow& \longrightarrow \pi \big[ \delta(\omega + \omega_0) {\color{blue}+} \delta(\omega-\omega_0)\big] \\ {\color{blue}\sin} (\omega_0 t) \longleftarrow& \longrightarrow {\color{blue}j}\pi \big[ \delta(\omega + \omega_0){\color{blue} -} \delta(\omega-\omega_0)\big] \\ f_{\color{blue}T}(t) \longleftarrow& \longrightarrow F_{\color{blue}T}(j\omega)\\ \delta_T(t) \star f_0(t) \longleftarrow& \longrightarrow \Omega \delta_\Omega(\omega) F_0(j\omega)\\ \delta_T(t) \star f_0(t) \longleftarrow& \longrightarrow \Omega \sum_{n=-\infty}^{\infty} F_0(jn\Omega) \delta (\omega- n\Omega)\\ \sum_{n=-\infty}^{\infty} F_n e^{jn\Omega t} \longleftarrow& \longrightarrow 2\pi \sum_{n=-\infty}^{\infty} F_n \delta (\omega- n\Omega) \\ \end{aligned} f(t)⟵F(jt)⟵f(αt)⟵a⋅f1​+b⋅f2​⟵f(t±t0​)⟵f(t±t0​)⟵e∓jω0​tf(t)⟵f1​(t)⋆f2​(t)⟵f1​(t)⋅f2​(t)⟵f(n)(t)⟵∫−∞t​f(x)dx⟵(−jt)nf(t)⟵πf(0)δ(t)+−jtf(t)​⟵e−αtε(t)⟵e−α∣t∣⟵gτ​(t)⟵1⟵δ⟵δ′⟵δ(n)⟵ε(t)⟵sgn(t)⟵↓R(τ)⟵∫−∞∞​f(t)f(t−τ)dt⟵↓R(τ)⟵T→∞lim​[T1​∫−2T​2T​​f(t)f(t−τ)dt]⟵ejω0​t⟵e−jω0​t⟵cos(ω0​t)⟵sin(ω0​t)⟵fT​(t)⟵δT​(t)⋆f0​(t)⟵δT​(t)⋆f0​(t)⟵n=−∞∑∞​Fn​ejnΩt⟵​⟶F(jω)⟶2πf(−ω)⟶∣α∣1​F(jαω​)⟶a⋅F1​+b⋅F2​⟶e±jωt0​F(jω)⟶∣F(jω)∣ej[φ(ω)±ωt0​]⟶F[j(ω±ω0​)]⟶F1​(jω)⋅F2​(jω)⟶2π1​F1​(jω)⋆F2​(jω)⟶(jω)nF(jω)⟶πF(0)δ(ω)+jωF(jω)​⟶F(n)(jω)⟶∫−∞ω​F(jx)dx⟶α+jω1​⟶α2+ω22α​⟶τSa⎩⎧​2ωτ​⎭⎫​⟶2πδ(ω)⟶1⟶jω⟶(jω)n⟶πδ(ω)+jω1​⟶jω2​⟶E(ω)↓⟶∣F(jω)∣2⟶P(ω)↓⟶T→∞lim​T∣FT​(jω)∣2​⟶2πδ(ω−ω0​)⟶2πδ(ω+ω0​)⟶π[δ(ω+ω0​)+δ(ω−ω0​)]⟶jπ[δ(ω+ω0​)−δ(ω−ω0​)]⟶FT​(jω)⟶ΩδΩ​(ω)F0​(jω)⟶Ωn=−∞∑∞​F0​(jnΩ)δ(ω−nΩ)⟶2πn=−∞∑∞​Fn​δ(ω−nΩ)​



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有