市政污泥热水解 您所在的位置:网站首页 总挥发固体tvs 市政污泥热水解

市政污泥热水解

2023-08-19 12:29| 来源: 网络整理| 查看: 265

[1]  Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y. Minimization of excess sludge production for biological wastewater treatment. Water Res 2003;37 (18):4453–67. 链接1

[2]  Franklin LB. Wastewater engineering: treatment, disposal and reuse. 3rd ed. New York: McGraw-Hill; 1991. 链接1

[3]  Tasca AL, Puccini M, Gori R, Corsi I, Galletti AMR, Vitolo S. Hydrothermal carbonization of sewage sludge: a critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag 2019;93:1–13. 链接1

[4]  Cornel P, Schaum C. Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci Technol 2009;59(6):1069–76. 链接1

[5]  Chen YD, Bai S, Li R, Su G, Duan X, Wang S, et al. Magnetic biochar catalysts from anaerobic digested sludge: production, application and environment impact. Environ Int 2019;126:302–8. 链接1

[6]  Chen P, Anderson E, Addy M, Zhang R, Cheng Y, Peng P, et al. Breakthrough technologies for the biorefining of organic solid and liquid wastes. Engineering 2018;4(4):574–80. 链接1

[7]  Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ. Sludge treatment: current research trends. Bioresour Technol 2017;243:1159–72. 链接1

[8]  Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 2014;155:289–99. 链接1

[9]  Chen S, Dong B, Dai X, Wang H, Li N, Yang D. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion. Waste Manag 2019;88:309–18. 链接1

[10]  Wang L, Li A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products. Water Res 2015;68:291–303. 链接1

[11]  Xu C, Chen W, Hong J. Life-cycle environmental and economic assessment of sewage sludge treatment in China. J Clean Prod 2014;67:79–87. 链接1

[12]  Youssef EA, Nakhla G, Charpentier PA. Oleic acid gasification over supported metal catalysts in supercritical water: hydrogen production and product distribution. Int J Hydrogen Energy 2011;36(8):4830–42. 链接1

[13]  Zhao P, Chen H, Ge S, Yoshikawa K. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion. Appl Energy 2013;111:199–205. 链接1

[14]  Li C, Wang X, Zhang G, Yu G, Lin J, Wang Y. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: bench-scale research and pilot-scale verification. Water Res 2017;117:49–57. 链接1

[15]  Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 2003;98(1–3):51–67. 链接1

[16]  Jin F, Zhou Z, Moriya T, Kishida H, Higashijima H, Enomoto H. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 2005;39(6):1893–902. 链接1

[17]  Tyagi VK, Lo SL. Sludge: a waste or renewable source for energy and resources recovery. Renew Sustain Energy Rev 2013;25:708–28. 链接1

[18]  Lundin M, Olofsson M, Pettersson GJ, Zetterlund H. Environmental and economic assessment of sewage sludge handling options. Resour Conserv Recycling 2004;41(4):255–78. 链接1

[19]  Lew RR. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 2011;9(7):509–18. 链接1

[20]  Bigall NC, Reitzig M, Naumann W, Simon P, van Pée KH, Eychmüller A. Fungal templates for noble-metal nanoparticles and their application in catalysis. Angew Chem Int Ed Engl 2008;47(41):7876–9. 链接1

[21]  Deng S, Ting YP. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol 2005;39(21):8490–6. 链接1

[22]  Zhang L, Wang Y, Peng B, Yu W, Wang H, Wang T, et al. Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chem 2014;16(8):3926–34. 链接1

[23]  Haneef M, Ceseracciu L, Canale C, Bayer IS, Heredia-Guerrero JA, Athanassiou A. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci Rep 2017;7(1):41292–302. 链接1

[24]  Wang L, Zhang L, Li A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: influence of operating conditions and the process energetics. Water Res 2014;65:85–97. 链接1

[25]  Wang L, Li A, Chang Y. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: heavy metals, volatile organic compounds and combustion characteristics of hydrochar. Chem Eng J 2016;297:1–10. 链接1

[26]  Barber WPF. Thermal hydrolysis for sewage treatment: a critical review. Water Res 2016;104:53–71. 链接1

[27]  To VHP, Nguyen TV, Vigneswaran S, Ngo HH. A review on sludge dewatering indices. Water Sci Technol 2016;74(1):1–16. 链接1

[28]  American Public Health Association, American Water Work Association, Water Environment Federation. Standard methods for the examination of water and wastewater. 20th Edition. Washington, DC: American Public Health Association; 1998.

[29]  DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28(3):350–6. 链接1

[30]  Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 1972;48(2):422–7. 链接1

[31]  Liang J, Lin Y, Wu S, Liu C, Lei M, Zeng C. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw. Bioresour Technol 2015;181:220–3. 链接1

[32]  Morgan-Sagastume F, Pratt S, Karlsson A, Cirne D, Lant P, Werker A. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresour Technol 2011;102(3):3089–97. 链接1

[33]  Graja S, Chauzy J, Fernandes P, Patria L, Cretenot D. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation. Water Sci Technol 2005;52(1–2):267–73. 链接1

[34]  Brooks RB. Heat treatment of activated sludge. Water Pollut Control 1968;67:592–601. 链接1

[35]  Li L, Pang H, He J, Zhang J. Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Mg2+. Chem Eng J 2019;373:1279–85. 链接1

[36]  Braguglia CM, Gianico A, Gallipoli A, Mininni G. The impact of sludge pretreatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load. Chem Eng J 2015;270:362–71. 链接1

[37]  Suárez-Iglesias O, Urrea JL, Oulego P, Collado S, Díaz M. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review. Sci Total Environ 2017;584–585:921–34. 链接1

[38]  Plaza C, Brunetti G, Senesi N, Polo A. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludgeamended soils by fluorescence spectroscopy. Environ Sci Technol 2006;40 (3):917–23. 链接1

[39]  Vardon DR, Sharma BK, Scott J, Yu G, Wang Z, Schideman L, et al. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Bioresour Technol 2011;102(17):8295–303. 链接1

[40]  He C, Giannis A, Wang JY. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy 2013;111:257–66. 链接1

[41]  Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J. Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 2013;1(9):1092–101. 链接1

[42]  Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 2010;4(2):160–77. 链接1

[43]  Liang J, Chen J, Wu S, Liu C, Lei M. Comprehensive insights into cellulose structure evolution via multi-perspective analysis during a slow pyrolysis process. Sustain Energy Fuels 2018;2(8):1855–62. 链接1

[44]  Mursito AT, Hirajima T, Sasaki K. Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel 2010;89(3):635–41. 链接1

[45]  Smidt E, Meissl K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag 2007;27(2):268–76. 链接1

[46]  Wang X, Andrade N, Shekarchi J, Fischer SJ, Torrents A, Ramirez M. Full scale study of Class A biosolids produced by thermal hydrolysis pretreatment and anaerobic digestion. Waste Manag 2018;78:43–50. 链接1

[47]  Xue Y, Liu H, Chen S, Dichtl N, Dai X, Li N. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chem Eng J 2015;264:174–80. 链接1

[48]  Yang D, Dai X, Song L, Dai L, Dong B. Effects of stepwise thermal hydrolysis and solid–liquid separation on three different sludge organic matter solubilization and biodegradability. Bioresour Technol 2019;290:121753. 链接1



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有