异基因造血干细胞移植后造血及免疫重建研究进展 您所在的位置:网站首页 干细胞EPQ 异基因造血干细胞移植后造血及免疫重建研究进展

异基因造血干细胞移植后造血及免疫重建研究进展

2024-03-14 17:36| 来源: 网络整理| 查看: 265

Zhonghua Xue Ye Xue Za Zhi. 2020 Nov; 41(11): 958–963. Chinese. doi: 10.3760/cma.j.issn.0253-2727.2020.11.018PMCID: PMC7767801PMID: 33333706异基因造血干细胞移植后造血及免疫重建研究进展Advance in hematopoietic and immune reconstitution of allogeneic stem cell transplantation霍 莹莹, 庞 爱明, and 程 涛Guest Editor (s): 徐 茂强Author information Article notes Copyright and License information PMC Disclaimer中国医学科学院血液病医院(中国医学科学院血液学研究所),实验血液学国家重点实验室,国家血液系统疾病临床医学研究中心,天津 300020, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, ChinaCorresponding author.通信作者:程涛(Cheng Tao),Email:nc.ca.smachi@oatgnehcReceived 2020 Jun 28Copyright 2020年版权归中华医学会所有Copyright © 2020 by Chinese Medical AssociationThis work is licensed under a Creative Commons Attribution 3.0 License (CC-BY-NC). The Copyright own by Publisher. Without authorization, shall not reprint, except this publication article, shall not use this publication format design. Unless otherwise stated, all articles published in this journal do not represent the views of the Chinese Medical Association or the editorial board of this journal.

在过去60多年中,造血干细胞移植已成为多种恶性血液肿瘤和骨髓衰竭性疾病有效且极具希望的治疗方式[1]–[2]。其成功的关键环节之一是移植后造血功能的恢复和免疫系统重建[3]。据国际血液和骨髓移植研究中心(CIBMTR)2019年报告显示,2018年在美国登记的造血干细胞移植患者中,allo-HSCT占38.3%,明显低于auto-HSCT(61.7%)[4],而我国从2008年至2016年期间共登记allo-HSCT病例16 631例,其中非血缘供者造血干细胞移植(MUD-HSCT)占比由2008年的20.4%降至2016年的13.6%,同胞全相合造血干细胞移植(MSD-HSCT)占比由2008年的48.1%降至2016年的33.0%,单倍型造血干细胞移植(haplo-HSCT)占比由2008年的9.6%升至2016年的51.7%,脐血干细胞移植(UCBT)占比由2008年的2.1%升至2016年的4.2%[5]。由于allo-HSCT造血重建晚于auto-HSCT,使得早期感染率增加,其免疫重建易受移植物抗宿主病(GVHD)影响而延迟,因此,allo-HSCT造血及免疫重建的研究对提高患者的生存质量及移植疗效意义重大。本文对近年来关于allo-HSCT移植物组分及造血重建与免疫重建的影响因素、造血重建及免疫重建规律以及改善造血及免疫重建策略等研究进展进行综述。

一、移植物组分及造血重建与免疫重建的影响因素

移植物由多种造血干祖细胞(HSPC)及免疫细胞组成,不仅与造血及免疫重建密不可分,也是移植后GVHD及移植相关死亡的影响因素。因此,充分研究移植物组分对提高植入率、减少GVHD发生等至关重要[6]–[7]。

(一)移植物组分

1.CD34+细胞:CD34+细胞是移植物计数和HSPC富集的指标。在外周血干细胞移植(PBSCT)中,移植物的CD34+细胞数标准为(2~5)×106/kg。研究表明,高剂量CD34+细胞与中性粒细胞和血小板的迅速植入呈正相关[8]–[10],但更快的造血恢复并非一定带来良好的移植结局,Remberger等[8]建议将CD34+细胞数控制在11×106/kg以下。

2.CD4+ T细胞亚群:Krieger等[11]利用基因敲除小鼠明确了CD4+ T细胞对同种异基因排斥反应至关重要。其中趋化因子受体CCR7能够介导免疫细胞归巢至淋巴器官,表达于初始T细胞(Naïve T)或中枢记忆性T细胞,在遇到受体抗原递呈细胞(APC)后诱发急性GVHD(aGVHD)[12]。Choufi等[13]对137例allo-HSCT患者的前瞻性研究证实,移植物中CD4+/CCR7+ T细胞比值可作为aGVHD预测指标,并发现外周造血干细胞中去除CD4+/CCR7+ T细胞不会减弱抗肿瘤作用[14]。

3.调节性T细胞(Treg):Treg是一群能够抑制免疫系统过度激活并维持免疫稳态的细胞,特异性表达CD4+/CD25high/Foxp3+或CD4+/CD25high/CD127low表面标志。在临床研究方面,对14项关于allo-HSCT患者的Treg指标的研究进行系统评价,发现高水平的Treg能够提高患者总生存(OS)率、降低aGVHD发生,可通过提高Treg/T细胞比值而改善疗效[15]。在小鼠研究中,通过体内成像发现Treg可能参与了为同种供体HSPC提供免疫豁免区的过程,使其免受攻击并维持干性[16]。另一项研究结果显示供体Treg通过增强造血干细胞(HSC)细胞周期活性和增殖从而促进造血及淋巴细胞恢复[17],但具体机制未明。

4.CD8+T细胞亚群:早期动物模型及临床研究已证实供体CD8+T细胞可促进HSC植入[18]–[19]。Reshef等[20]对200例allo-HSCT患者移植物T细胞含量分析发现,较高剂量的CD8+ T细胞(>0.72×108/kg)明显提高无复发生存率和OS率,且未导致GVHD显著增加。Cao等[21]对接受清髓性预处理allo-HSCT的移植物中CD34+、CD3+、CD4+、CD8+细胞数量分析发现,T细胞及其主要亚群不影响移植结局,认为CD8+T细胞对复发的保护作用可能与预处理方案有关[22],CD8+T细胞数量及比例是否影响抗肿瘤效应有待确定。

5.NKT(natural killer T)细胞:NKT细胞分为Ⅰ型NKT细胞或恒定不变的NKT细胞(iNKT)和Ⅱ型NKT细胞。iNKT细胞作为非特异性免疫和特异性免疫的桥梁,在免疫调节和增强抗肿瘤效应中极具潜力。Chaidos等[23]发现移植物中CD4− iNKT细胞是预测aGVHD及严重程度的唯一移植指标。Malard等[24]发现移植物中iNKT细胞>0.11×106/kg时,患者无GVHD及无进展生存(GPFS)明显提高,多变量分析提示iNKT数量是显著影响GPFS的唯一指标,为探究移植物免疫细胞组成及改善移植结局奠定了理论基础。

6.自然杀伤细胞(NK)细胞:NK细胞是非特异性免疫系统的重要组成,具有杀伤白血病细胞和病毒感染细胞的能力。Vasu等[25]明确了G-CSF动员的PBSC(G-PBSC)移植物中较高剂量活化的NK细胞(>18×106/kg)与aGVHD发生率低相关。Maggs等[26]对107例T细胞去除allo-HSCT患者进行研究,NK细胞6.3×106/kg组仅为6%。

7.骨髓来源的抑制性细胞(MDSC):MDSC是一群起源于骨髓中共同髓系祖细胞、具有调节性或抑制性的未成熟髓系细胞。Zhang等[27]在小鼠模型证实CD115+ MDSC能够抑制GVHD同时不显著减弱移植物抗白血病(GVL)效应。一项纳入了101例allo-HSCT患者的前瞻性、随机、多中心研究发现,G-CSF动员的BM(G-BM)组较G-PBSC组MDSC含量更高,输注的MDSC数量与aGVHD严重程度呈负相关[28]。G-CSF联合普乐沙福(plerixafor,AMD3100)动员的PBSC中MDSC较单用G-CSF明显增多,动员剂对移植物中MDSC数量及影响值得进一步探究[29]。

(二)造血重建与免疫重建影响因素

1.移植物的数量及组分:如前所述,更高水平的CD34+细胞可促进造血重建,是目前评价移植物质量的主要参数及造血植入唯一公认的预测因素。也有研究提出高剂量CD3+T细胞(>3.5×108/kg)和CD34+细胞(>5.1×106/kg)可以预测PBSCT植入[30]。供者来源T细胞去除(TCD)可最大程度减少引起GVHD的T细胞并富集HSPC。CD34阳性分选是目前临床上最常用的TCD方案。研究证明T细胞去除allo-HSCT可降低GVHD风险,但缺乏T细胞导致感染清除率下降及免疫重建延迟[31]。

2.供者因素:包括供者性别、年龄、供受者HLA匹配情况等。在供者性别方面,Kollman等[32]对11 039例无关供者与移植结果相关性分析发现,女性供者或供受者存在2个及以上HLA位点错配易导致中性粒细胞恢复延迟,而中性粒细胞恢复与供者年龄无关。Akahoshi等[33]认为供受者HLA匹配情况是血小板延迟植入的独立风险因素,可能是由于受者残余细胞通过攻击HLA-Ⅰ类抗原阻止血小板恢复。年龄是甄选最佳供者的重要因素,Kollman等[32]观察到在较大年龄供者组中,其移植后Ⅱ~Ⅳ度aGVHD的发生率更高,可能是年老供者免疫系统中记忆T细胞替代naïve T细胞所致。Rezvani等[34]发现只有清髓性allo-HSCT中供者年龄对中性粒细胞植入有影响,可能是CD34+细胞数量不同所致。Wang等[35]认为选择年轻、非遗传母系HLA抗原不合的男性供者可使患者具有更好的haplo-HSCT后生存。总之,HLA匹配的同胞供者通常是allo-HSCT的首选,当存在多个合适供者时,需要结合供者特征预测造血及免疫重建情况及临床疗效进行选择。

3.预处理方案:Wilke等[36]比较了移植前接受清髓性预处理(MAC)和减低强度预处理(RIC)的患者,认为MAC组移植后无长期骨髓损伤的组织学证据,外周细胞及免疫恢复无差异。但小鼠研究发现预处理照射会永久损害造血微环境,减少HSC的植入从而影响重建[37]。TBI被认为是促进植入的因素,对3 933例接受无关供者HSCT患者分析显示,TBI与中性粒细胞植入无相关性,但TBI与UCBT的中性粒细胞植入显著相关[38]。高剂量TBI可导致患者造血及免疫恢复缓慢[39],非复发死亡率升高[40],因此,选择更优的预处理方案可明显改善生存。

4.胸腺:胸腺对移植后T细胞重建具有关键作用,其功能由受者年龄、预处理方案、GVHD发生等多种因素影响。移植前化疗和物理照射均引起胸腺损伤,尤其破坏基质中胸腺上皮细胞(TEC),TEC在胸腺阴性选择中发挥关键作用进而影响T细胞重建[41]。胸腺也是GVHD敏感靶标,由于TEC为受者来源且高表达MHC分子,可作为APC启动同种反应性T细胞,损害胸腺基质导致移植后T细胞恢复延迟,这可能是移植后免疫缺陷和慢性GVHD的原因[42]。近来发现GVHD小鼠胸腺中固有淋巴细胞及IL-22减少,移植后给予IL-22可改善胸腺细胞生成及外周T细胞发育[43]。研究发现核因子κB受体活化因子配体(RANKL)可促进老龄小鼠移植后TEC和T细胞恢复[44]。

二、造血重建和免疫重建规律

(一)造血重建

造血重建包括中性粒细胞和血小板的植入。Holtick等[45]对行骨髓移植(BMT)或PBSCT的9项随机对照试验进行系统评价,其中PBSCT的中位中性粒细胞植入时间为16.4 d,BMT为19.9 d;PBSCT的血小板中位植入时间为13 d,BMT为19 d;Anaasetti等[46]比较了无关供者行BMT和PBSCT后的造血重建,PBSCT的中性粒细胞植入可提前5 d,血小板植入可提前7 d,PBSCT的造血重建明显早于BMT;UCBT的中性粒细胞、血小板植入时间分别为30 d、50~100 d[47],晚于BMT和PBSCT。

(二)免疫重建

1.非特异性免疫重建:除中性粒细胞外,非特异性免疫细胞包括NK细胞、单核细胞和树突状细胞(DC)。NK细胞是移植后最早重建的免疫细胞群,由于部分haplo-HSCT行T细胞去除处理,移植早期的抗肿瘤效应便依赖于NK细胞。NK细胞来源于造血祖细胞(HPC)的分化和成熟,在移植后1个月内数量恢复并发挥GVL效应,3~6个月内进行免疫表型和亚群比例调整。研究发现不同来源移植物均不影响移植后NK细胞恢复[48]。单核细胞和DC数量通常在移植后30 d恢复,而单核细胞功能1年内是否恢复尚不明确[49]。在allo-HSCT中,供者来源的DC可在2~6周后在外周血中取代患者DC[50]。总之,非特异性免疫细胞作为allo-HSCT后的早期免疫防线,对调节GVHD和GVL效应发挥重要作用。

2.特异性免疫重建:B细胞恢复通常来自供者HPC而非成熟B细胞扩增。在HSCT后1.5~2个月首先在外周血中检测到过渡型B细胞(CD19+CD24+CD38+),随成熟B细胞增多而数量减少。B细胞在6~12个月数量恢复正常,主要为过渡型和幼稚B细胞;在移植后2年B细胞功能仍受损及体液免疫缺陷[51]。不同移植物来源的B细胞重建略有差异,移植物BM比PBSC中因含有更多HPC而重建更快[52]。双份UCBT较HLA全合的无关供者PBSCT患者B细胞恢复更快,可能与UCBT后B细胞活化因子水平高有关[53]。

T细胞是完成免疫重建的最后一环,包括胸腺依赖性与非胸腺依赖性途径,由于移植前后胸腺损伤,因此移植后2年T细胞(尤其是CD4+T细胞)持续缺乏。与B细胞相反,早期T细胞重建依赖供者成熟T细胞的扩增,而T细胞的完整重建需依赖胸腺产生naïve T细胞分化发育[49]。胸腺因预处理方案或GVHD而功能受损导致CD4+T细胞数目少,而记忆或效应型CD8+ T细胞移植后迅速扩增并在12个月内恢复正常,因此移植后CD4+∶CD8+ T细胞比值倒置是T细胞重建的最早特征之一并维持长达数年(主要取决于预处理方案及GVHD治疗方案)。UCBT患者T细胞重建延迟6个月,在2年之后才能恢复[52]。

三、改善造血重建及免疫重建的新策略

(一)增强HSPC动员

研究报道趋化因子受体CXCR4与其主要配体CXCL12之间相互作用,可独立影响移植中HSPC和造血微环境[54]。CXCR4拮抗剂普乐沙福,与G-CSF联用可增强动员效果。研究表明,三种小分子CXCR4拮抗剂连续输注对CXCR4/CXCL12轴进行可逆性阻断并释放HSPC[55]。Zhang等[56]发现新型小分子Me6TREN作为新型动员剂,比普乐沙福或G-CSF动员更多HSPC。此外,前列腺素E2(PGE2)可动员多种哺乳动物HSPC,其作用机制独立于CXCR4/CXCL12轴促进造血重建[57]。总之,干细胞动员方案应探索快速动员、高效、不良反应小的优化方案,并确保其安全性。

(二)促进HSPC归巢及植入

移植后并非所有HSPC都能够归巢至造血微环境中发挥作用,因此促进归巢也是增强造血及免疫重建的策略之一。除CXCR4/CXCL12轴的小分子化合物外,Aljitawi等[58]认为阻断促红细胞生成素(EPO)及其受体可促进UCBT中CD34+细胞的归巢及植入,应用高压氧降低EPO水平,目前已进入临床试验。由于脐血在UCBT中的归巢能力缺陷,Popat等[59]通过提高一个单位脐血岩藻糖基化能力后同另一单位未处理脐血共同移植,与未处理的双份脐血行UCBT相比,造血重建时间缩短,提高了植入效率。两项Ⅰ/Ⅱ期临床研究分别表明,在细胞培养中加入烟酰胺或StemRegenin-1促进脐血植入,具有很好的有效性及安全性[60]–[61]。

(三)改善造血微环境

造血微环境对HSC归巢及调控至关重要,包括破骨细胞、成骨细胞、血管内皮细胞以及间充质干细胞(MSC)等。MSC可增强HSC植入同时抑制免疫细胞功能,预防GVHD[62]。临床研究表明,MSC和HSC共移植可促进造血重建改善GVHD[63],但尚无MSC生产标准化流程、扩增体系以及MSC相关治疗指南。HSC长期处于低活性氧(ROS)环境中保持干性,ROS升高是BMT的主要不利因素[64]。前期研究显示,小分子抗氧化剂N-乙酰半胱氨酸(NAC)可降低ROS水平促进HSC植入[65],成为改善造血重建前景较好的治疗手段[66]。

(四)改善胸腺功能

胸腺在T细胞重建发挥重要作用,除胸腺内源性再生外,也可经外源性方式增强胸腺功能。IL-7在T细胞发育中发挥核心作用,Perales等[67]报道了rhIL-7对效应记忆T细胞扩增有影响,增强免疫恢复,且无严重GVHD和毒性。角质细胞生长因子(KGF)可以保护胸腺和GVHD攻击。Auto-HSCT的成年恒河猴接受KGF注射后造血恢复加快并改善了胸腺功能,评估KGF和亮丙瑞林对移植后免疫恢复的临床试验在进行中[42]。此外,IL-2、IL-15、IL-22及生长激素均有望成为改善胸腺功能的新型策略。

(五)血小板生成素及其受体激动剂

血小板植入延迟是allo-HSCT尤其是haplo-HSCT移植相关死亡的危险因素。Han等[68]发现重组人血小板生成素(rhTPO)促进haplo-HSCT血小板植入,显著减少了血小板输注;艾曲泊帕和罗米司亭为新型血小板受体激动剂(TPO-RA),通过激活下游信号通路JAK2/STAT5刺激生成巨核细胞及其前体,广泛应用于HSCT后延迟性血小板减少症患者中[69]。但目前尚无在HSCT后预防性使用艾曲泊帕及罗米司亭的临床试验,相信新型TPO-RA同样具有广阔的应用前景。

四、结语

allo-HSCT作为多种血液疾病的首选治疗方法,造血及免疫重建是移植成功的关键环节,随着精准医学时代的到来,新的分子靶向药物不断涌现,相信可以在allo-HSCT的多个环节进行优化,改善造血及免疫重建,避免患者因造血重建不良及免疫缺陷时间过长而出现相关死亡,提高患者的生存质量及移植疗效。

Funding Statement

基金项目:国家重点研发计划(2018YFA0107801,2016YFA0100600);国家自然科学基金委创新研究群体科学基金(81421002);国家自然科学基金(81670106);中国医学科学院医学与健康科技创新工程项目(2016-I2M-1-017)

References1. Passweg JR, Baldomero H, Bader P, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report[J] Bone Marrow Transplant. 2017;52(6):811–817. doi: 10.1038/bmt.2017.34. [PMC free article] [PubMed] [CrossRef] [Google Scholar]2. Xu LP, Wu DP, Han MZ, et al. A review of hematopoietic cell transplantation in China: data and trends during 2008-2016[J] Bone Marrow Transplant. 2017;52(11):1512–1518. doi: 10.1038/bmt.2017.59. [PubMed] [CrossRef] [Google Scholar]3. Pei XY, Zhao XY, Xu LP, et al. Immune reconstitution in patients with acquired severe aplastic anemia after haploidentical stem cell transplantation[J] Bone Marrow Transplant. 2017;52(11):1556–1562. doi: 10.1038/bmt.2017.174. [PubMed] [CrossRef] [Google Scholar]4. D'Souza A, Fretham C, Lee SJ, et al. Current Use of and Trends in Hematopoietic Cell Transplantation in the United States[J] Biol Blood Marrow Transplant. 2020;26(8):e177–e182. doi: 10.1016/j.bbmt.2020.04.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]5. 黄 晓军. 中国造血干细胞移植登记工作现状和展望[J] 内科理论与实践 2018;13(2):69–72. doi: 10.16138/j.1673-6087.2018.02.001. [CrossRef] [Google Scholar]6. Admiraal R, van Kesteren C, Jol-van der Zijde CM, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis[J] Lancet Haematol. 2015;2(5):e194–e203. doi: 10.1016/S2352-3026(15)00045-9. [PubMed] [CrossRef] [Google Scholar]7. de Koning C, Plantinga M, Besseling P, et al. Immune reconstitution after allogeneic hematopoietic cell transplantation in children[J] Biol Blood Marrow Transplant. 2016;22(2):195–206. doi: 10.1016/j.bbmt.2015.08.028. [PubMed] [CrossRef] [Google Scholar]8. Remberger M, Törlén J, Ringdén O, et al. Effect of total nucleated and CD34+ cell dose on outcome after allogeneic hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2015;21(5):889–893. doi: 10.1016/j.bbmt.2015.01.025. [PubMed] [CrossRef] [Google Scholar]9. Heimfeld S. HLA-identical stem cell transplantation: is there an optimal CD34 cell dose?[J] Bone Marrow Transplant. 2003;31(10):839–845. doi: 10.1038/sj.bmt.1704019. [PubMed] [CrossRef] [Google Scholar]10. Pulsipher MA, Chitphakdithai P, Logan BR, et al. Donor, recipient, and transplant characteristics as risk factors after unrelated donor PBSC transplantation: beneficial effects of higher CD34+ cell dose[J] Blood. 2009;114(13):2606–2616. doi: 10.1182/blood-2009-03-208355. [PMC free article] [PubMed] [CrossRef] [Google Scholar]11. Krieger NR, Yin DP, Fathman CG. CD4+ but not CD8+ cells are essential for allorejection[J] J Exp Med. 1996;184(5):2013–2018. doi: 10.1084/jem.184.5.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]12. Yakoub-Agha I, Saule P, Depil S, et al. A high proportion of donor CD4+ T cells expressing the lymph node-homing chemokine receptor CCR7 increases incidence and severity of acute graft-versus-host disease in patients undergoing allogeneic stem cell transplantation for hematological malignancy[J] Leukemia. 2006;20(9):1557–1565. doi: 10.1038/sj.leu.2404308. [PubMed] [CrossRef] [Google Scholar]13. Choufi B, Thiant S, Trauet J, et al. The impact of donor naive and memory T cell subsets on patient outcome following allogeneic stem cell transplantation: relationship between infused donor CD4+/CCR7+ T cell subsets and acute graft-versus-host disease[J] Pathol Biol(Paris) 2014;62(3):123–128. doi: 10.1016/j.patbio.2014.02.013. [PubMed] [CrossRef] [Google Scholar]14. Choufi B, Trauet J, Thiant S, et al. Donor-derived CD4+/CCR7+ T-cell partial selective depletion does not alter acquired anti-infective immunity[J] Bone Marrow Transplant. 2014;49(5):611–615. doi: 10.1038/bmt.2014.6. [PubMed] [CrossRef] [Google Scholar]15. Fisher SA, Lamikanra A, Dorée C, et al. Increased regulatory T cell graft content is associated with improved outcome in haematopoietic stem cell transplantation: a systematic review[J] Br J Haematol. 2017;176(3):448–463. doi: 10.1111/bjh.14433. [PubMed] [CrossRef] [Google Scholar]16. Fujisaki J, Wu J, Carlson AL, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche[J] Nature. 2011;474(7350):216–219. doi: 10.1038/nature10160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]17. Mueller AMS, Poyser J, Kohrt HE, et al. Conventional CD4+CD25− and regulatory CD4+CD25+ T cells have opposite effects on progenitor cells and hematopoietic reconstitution following stem cell transplantation[J] Blood. 2014;124(21):654. doi: 10.1182/blood.V124.21.654.654. [CrossRef] [Google Scholar]18. Gandy KL, Domen J, Aguila H, et al. CD8+TCR+ and CD8+TCR− cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers[J] Immunity. 1999;11(5):579–590. doi: 10.1016/s1074-7613(00)80133-8. [PubMed] [CrossRef] [Google Scholar]19. Cao TM, Shizuru JA, Wong RM, et al. Engraftment and survival following reduced-intensity allogeneic peripheral blood hematopoietic cell transplantation is affected by CD8+ T-cell dose[J] Blood. 2005;105(6):2300–2306. doi: 10.1182/blood-2004-04-1473. [PubMed] [CrossRef] [Google Scholar]20. Reshef R, Huffman AP, Gao A, et al. High graft cd8 cell dose predicts improved survival and enables better donor selection in allogeneic stem-cell transplantation with reduced-intensity conditioning[J] J Clin Oncol. 2015;33(21):2392–2398. doi: 10.1200/JCO.2014.60.1203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]21. Cao TM, Wong RM, Sheehan K, et al. CD34, CD4, and CD8 cell doses do not influence engraftment, graft-versus-host disease, or survival following myeloablative human leukocyte antigen-identical peripheral blood allografting for hematologic malignancies[J] Exp Hematol. 2005;33(3):279–285. doi: 10.1016/j.exphem.2004.12.004. [PubMed] [CrossRef] [Google Scholar]22. Widman A, Reshef R. Precision in donor selection: Identifying ideal stem-cell donors through their T cells[J] Exp Hematol. 2016;44(11):1020–1023. doi: 10.1016/j.exphem.2016.07.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]23. Chaidos A, Patterson S, Szydlo R, et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation[J] Blood. 2012;119(21):5030–5036. doi: 10.1182/blood-2011-11-389304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. Malard F, Labopin M, Chevallier P, et al. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival[J] Blood. 2016;127(14):1828–1835. doi: 10.1182/blood-2015-12-688739. [PubMed] [CrossRef] [Google Scholar]25. Vasu S, Geyer S, Bingman A, et al. Granulocyte colony-stimulating factor-mobilized allografts contain activated immune cell subsets associated with risk of acute and chronic graft-versus-host disease[J] Biol Blood Marrow Transplant. 2016;22(4):658–668. doi: 10.1016/j.bbmt.2015.12.015. [PubMed] [CrossRef] [Google Scholar]26. Maggs L, Kinsella F, Chan YLT, et al. The number of CD56dim NK cells in the graft has a major impact on risk of disease relapse following allo-HSCT[J] Blood Adv. 2017;1(19):1589–1597. doi: 10.1182/bloodadvances.2017008631. [PMC free article] [PubMed] [CrossRef] [Google Scholar]27. Zhang J, Chen HM, Ma G, et al. The mechanistic study behind suppression of GVHD while retaining GVL activities by myeloid-derived suppressor cells[J] Leukemia. 2019;33(8):2078–2089. doi: 10.1038/s41375-019-0394-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]28. Fan Q, Liu H, Liang X, et al. Superior GVHD-free, relapse-free survival for G-BM to G-PBSC grafts is associated with higher MDSCs content in allografting for patients with acute leukemia[J] J Hematol Oncol. 2017;10(1):135. doi: 10.1186/s13045-017-0503-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]29. Teipel R, Oelschlägel U, Wetzko K, et al. Differences in cellular composition of peripheral blood stem cell grafts from healthy stem cell donors mobilized with either granulocyte colony-stimulating factor (G-CSF) alone or G-CSF and Plerixafor[J] Biol Blood Marrow Transplant. 2018;24(11):2171–2177. doi: 10.1016/j.bbmt.2018.06.023. [PubMed] [CrossRef] [Google Scholar]30. Lee HS, Park LC, Lee EM, et al. Predictive factors for rapid neutrophil and platelet engraftment after allogenic peripheral blood stem cell transplantation in patients with acute leukemia[J] Ann Hematol. 2013;92(12):1685–1693. doi: 10.1007/s00277-013-1847-5. [PubMed] [CrossRef] [Google Scholar]31. Cho C, Perales M-A. Expanding therapeutic opportunities for hematopoietic stem cell transplantation: T cell depletion as a model for the targeted allograft[J] Annu Rev Med. 2019;70:381–393. doi: 10.1146/annurev-med-120617-041210. [PubMed] [CrossRef] [Google Scholar]32. Kollman C, Spellman SR, Zhang MJ, et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy[J] Blood. 2016;27(2):260–267. doi: 10.1182/blood-2015-08-663823. [PMC free article] [PubMed] [CrossRef] [Google Scholar]33. Yu Akahoshi, Shun-Ichi Kimura, Ayumi Gomyo, et al. Delayed platelet recovery after allogeneic hematopoietic stem cell transplantation: Association with chronic graft-versus-host disease and survival outcome[J] Hematol Oncol. 2018;36(1):276–284. doi: 10.1002/hon.2427. [PubMed] [CrossRef] [Google Scholar]34. Rezvani AR, Storer BE, Guthrie KA, et al. Impact of donor age on outcome after allogeneic hematopoietic cell transplantation[J] Biol Blood Marrow Transplant. 2015;21(1):105–112. doi: 10.1016/j.bbmt.2014.09.021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]35. Wang Y, Chang YJ, Xu LP, et al. Who is the best donor for a related HLA haplotype-mismatched transplant?[J] Blood. 2014;124(6):843–850. doi: 10.1182/blood-2014-03-563130. [PubMed] [CrossRef] [Google Scholar]36. Wilke C, Holtan SG, Sharkey L, et al. Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: Effect of radiation dose and conditioning regimen[J] Radiother Oncol. 2016;118(1):65–71. doi: 10.1016/j.radonc.2015.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. Abbuehl J-P, Tatarova Z, Held W, et al. Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation[J] Cell Stem Cell. 2017;21(2):241–255. doi: 10.1016/j.stem.2017.07.004. [PubMed] [CrossRef] [Google Scholar]38. Nakasone H, Fuji S, Yakushijin K, et al. Impact of total body irradiation on successful neutrophil engraftment in unrelated bone marrow or cord blood transplantation[J] Am J Hematol. 2017;92(2):171–178. doi: 10.1002/ajh.24613. [PubMed] [CrossRef] [Google Scholar]39. Wilke C, Holtan SG, Sharkey L, et al. Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: Effect of radiation dose and conditioning regimen[J] Radiother Oncol. 2016;118(1):65–71. doi: 10.1016/j.radonc.2015.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. Sabloff M, Chhabra S, Wang T, et al. Comparison of high doses of total body irradiation in myeloablative conditioning before hematopoietic cell transplantation[J] Biol Blood Marrow Transplant. 2019;25(12):2398–2407. doi: 10.1016/j.bbmt.2019.08.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]41. Klein L, Kyewski B, Allen PM, et al. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see)[J] Nat Rev Immunol. 2014;14(6):377–391. doi: 10.1038/nri3667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]42. Chaudhry MS, Velardi E, Malard F, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation: time to T up the thymus[J] J Immunol. 2017;198(1):40–46. doi: 10.4049/jimmunol.1601100. [PubMed] [CrossRef] [Google Scholar]43. Dudakov JA, Mertelsmann AM, O'Connor MH, et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease[J] Blood. 2017;130(7):933–942. doi: 10.1182/blood-2017-01-762658. [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. Lopes N, Vachon H, Marie J, et al. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation[J] EMBO Mol Med. 2017;9(6):835–851. doi: 10.15252/emmm.201607176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]45. Holtick U, Albrecht M, Chemnitz JM, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults - a systematic review and meta-analysis[J] Crit Rev Oncol Hematol. 2015;94(2):179–188. doi: 10.1016/j.critrevonc.2014.12.007. [PubMed] [CrossRef] [Google Scholar]46. Anasetti C, Logan BR, Lee SJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors[J] N Engl J Med. 2012;367(16):1487–1496. doi: 10.1056/NEJMoa1203517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]47. Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation[J] Front Immunol. 2014;5:68. doi: 10.3389/fimmu.2014.00068. [PMC free article] [PubMed] [CrossRef] [Google Scholar]48. Ullah MA, Hill GR, Tey S-K. Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation[J] Front Immunol. 2016;7:144. doi: 10.3389/fimmu.2016.00144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]49. Stern L, McGuire H, Avdic S, et al. Mass cytometry for the assessment of immune reconstitution after hematopoietic stem cell transplantation[J] Front Immunol. 2018;9:1672. doi: 10.3389/fimmu.2018.01672. [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients[J] Blood. 2002;99(4):1442–1448. doi: 10.1182/blood.v99.4.1442. [PubMed] [CrossRef] [Google Scholar]51. Ogonek J, Kralj Juric M, Ghimire S, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation[J] Front Immunol. 2016;7:507. doi: 10.3389/fimmu.2016.00507. [PMC free article] [PubMed] [CrossRef] [Google Scholar]52. Mehta RS, Rezvani K. Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection[J] Virulence. 2016;7(8):901–916. doi: 10.1080/21505594.2016.1208866. [PMC free article] [PubMed] [CrossRef] [Google Scholar]53. Jacobson CA, Turki AT, McDonough SM, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation[J] Biol Blood Marrow Transplant. 2012;18(4):565–574. doi: 10.1016/j.bbmt.2011.08.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]54. Karpova D, Bonig H. Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis-lessons from pharmacological and genetic models[J] Stem Cells. 2015;33(8):2391–2399. doi: 10.1002/stem.2054. [PubMed] [CrossRef] [Google Scholar]55. Karpova D, Ritchey JK, Holt MS, et al. Continuous blockade of CXCR4 results in dramatic mobilization and expansion of hematopoietic stem and progenitor cells[J] Blood. 2017;129(21):2939–2949. doi: 10.1182/blood-2016-10-746909. [PMC free article] [PubMed] [CrossRef] [Google Scholar]56. Zhang J, Ren X, Shi W, et al. Small molecule Me6TREN mobilizes hematopoietic stem/progenitor cells by activating MMP-9 expression and disrupting SDF-1/CXCR4 axis[J] Blood. 2014;123(3):428–441. doi: 10.1182/blood-2013-04-498535. [PubMed] [CrossRef] [Google Scholar]57. Hoggatt J, Mohammad KS, Singh P, et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2[J] Nature. 2013;495(7441):365–369. doi: 10.1038/nature11929. [PMC free article] [PubMed] [CrossRef] [Google Scholar]58. Aljitawi OS, Paul S, Ganguly A, et al. Erythropoietin modulation is associated with improved homing and engraftment after umbilical cord blood transplantation[J] Blood. 2016;128(25):3000–3010. doi: 10.1182/blood-2016-05-715292. [PMC free article] [PubMed] [CrossRef] [Google Scholar]59. Popat U, Mehta RS, Rezvani K, et al. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation[J] Blood. 2015;125(19):2885–2892. doi: 10.1182/blood-2015-01-607366. [PMC free article] [PubMed] [CrossRef] [Google Scholar]60. Horwitz ME, Wease S, Blackwell B, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide[J] J Clin Oncol. 2019;37(5):367–374. doi: 10.1200/JCO.18.00053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]61. Wagner JE, Jr, Brunstein CG, Boitano AE, et al. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft[J] Cell Stem Cell. 2016;18(1):144–155. doi: 10.1016/j.stem.2015.10.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]62. Tobin LM, Healy ME, English K, et al. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease[J] Clin Exp Immunol. 2013;172(2):333–348. doi: 10.1111/cei.12056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]63. Fisher SA, Cutler A, Doree C, et al. Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition[J] Cochrane Database Syst Rev. 2019;1(1):CD009768. doi: 10.1002/14651858.CD009768.pub2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]64. Kong Y, Song Y, Hu Y, et al. Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants[J] Oncotarget. 2016;7(21):30892–38906. doi: 10.18632/oncotarget.8810. [PMC free article] [PubMed] [CrossRef] [Google Scholar]65. Hu L, Cheng H, Gao Y, et al. Antioxidant N-acetyl-L-cysteine increases engraftment of human hematopoietic stem cells in immune-deficient mice[J] Blood. 2014;124(20):e45–e48. doi: 10.1182/blood-2014-03-559369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]66. Kong Y, Wang Y, Zhang YY, et al. Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation[J] Blood Adv. 2019;3(8):1303–1317. doi: 10.1182/bloodadvances.2018029454. [PMC free article] [PubMed] [CrossRef] [Google Scholar]67. Perales M-A, Goldberg JD, Yuan J, et al. Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation[J] Blood. 2012;120(24):4882–4891. doi: 10.1182/blood-2012-06-437236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]68. Han TT, Xu LP, Liu DH, et al. Recombinant human thrombopoietin promotes platelet engraftment after haploidentical hematopoietic stem cell transplantation: a prospective randomized controlled trial[J] Ann Hematol. 2015;94(1):117–128. doi: 10.1007/s00277-014-2158-1. [PubMed] [CrossRef] [Google Scholar]69. Mahat U, Rotz SJ, Hanna R. Use of thrombopoietin receptor agonists in prolonged thrombocytopenia after hematopoietic stem cell transplantation[J] Biol Blood Marrow Transplant. 2020;26(3):e65–e73. doi: 10.1016/j.bbmt.2019.12.003. [PubMed] [CrossRef] [Google Scholar]


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有