【高等数学笔记】多元函数微分学在几何上的应用、Frenet标架、空间曲线的曲率与挠率 您所在的位置:网站首页 圆的半径和曲率的关系 【高等数学笔记】多元函数微分学在几何上的应用、Frenet标架、空间曲线的曲率与挠率

【高等数学笔记】多元函数微分学在几何上的应用、Frenet标架、空间曲线的曲率与挠率

2024-07-05 02:29| 来源: 网络整理| 查看: 265

文章目录 一、空间曲线的切线与法平面二、弧长三、曲面的切平面与法线四、Frenet标架1. 法平面与切线2. 密切平面与次法线3. 从切平面与主法线 五、空间曲线的曲率与挠率1. 曲率2. 挠率

一、空间曲线的切线与法平面

空间曲线的参数方程: R → R 3 \mathbb R\to\mathbb R^3 R→R3, r ( t ) = ( x ( t ) , y ( t ) , z ( t ) ) ( t ∈ [ α , β ] ) \bm r(t)=(x(t),y(t),z(t))\quad(t\in[\alpha,\beta]) r(t)=(x(t),y(t),z(t))(t∈[α,β]) 连续曲线: r ( t ) \bm r(t) r(t)在 [ α , β ] [\alpha,\beta] [α,β]上连续,即 x ( t ) , y ( t ) , z ( t ) x(t),y(t),z(t) x(t),y(t),z(t)均在 [ α , β ] [\alpha,\beta] [α,β]上连续 简单曲线:连续且不自交,即 ∀ t 1 , t 2 ∈ ( α , β ) \forall t_1,t_2\in(\alpha,\beta) ∀t1​,t2​∈(α,β), t 1 ≠ t 2 t_1\ne t_2 t1​​=t2​,均有 r ( t 1 ) ≠ r ( t 2 ) \bm r(t_1)\ne\bm r(t_2) r(t1​)​=r(t2​) 简单闭曲线:简单曲线且 r ( α ) = r ( β ) \bm r(\alpha)=\bm r(\beta) r(α)=r(β) 正向: t t t增大的方向(负向: t t t减小的方向) 有向曲线:规定了正向的曲线 切向量:设点 P 0 = r ( t 0 ) P_0=\bm r(t_0) P0​=r(t0​),则 r ˙ ( t 0 ) \dot\bm r(t_0) r˙(t0​)就是在点 P 0 P_0 P0​的一个切向量 切线: x − x 0 ( t 0 ) x ˙ ( t 0 ) = y − y 0 ( t 0 ) y ˙ ( t 0 ) = z − z 0 ( t 0 ) z ˙ ( t 0 ) \frac{x-x_0(t_0)}{\dot x(t_0)}=\frac{y-y_0(t_0)}{\dot y(t_0)}=\frac{z-z_0(t_0)}{\dot z(t_0)} x˙(t0​)x−x0​(t0​)​=y˙​(t0​)y−y0​(t0​)​=z˙(t0​)z−z0​(t0​)​或 ρ = r ( t 0 ) + t r ˙ ( t 0 ) \bm\rho=\bm r(t_0)+t\dot\bm r(t_0) ρ=r(t0​)+tr˙(t0​) 光滑曲线:切线方向连续变化的曲线,即 r ( t ) \bm r(t) r(t)有连续导数且导数在 [ α , β ] [\alpha,\beta] [α,β]上恒不为 0 \bm 0 0 法线:过 P 0 P_0 P0​且与 P 0 P_0 P0​处的切线垂直的任一直线 法平面:所有法线位于法平面内,方程: r ˙ ( t 0 ) ⋅ [ ρ − r ( t 0 ) ] = 0 \dot\bm r(t_0)\cdot[\bm\rho-\bm r(t_0)]=0 r˙(t0​)⋅[ρ−r(t0​)]=0或 x ˙ ( t 0 ) [ x − x ( t 0 ) ] + y ˙ ( t 0 ) [ y − y ( t 0 ) ] + z ˙ ( t 0 ) [ z − z ( t 0 ) ] = 0 \dot x(t_0)[x-x(t_0)]+\dot y(t_0)[y-y(t_0)]+\dot z(t_0)[z-z(t_0)]=0 x˙(t0​)[x−x(t0​)]+y˙​(t0​)[y−y(t0​)]+z˙(t0​)[z−z(t0​)]=0 一般式方程:设曲线方程为 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} {F(x,y,z)=0G(x,y,z)=0​,且雅可比式 ∂ ( F , G ) ∂ ( y , z ) ∣ P 0 ≠ 0 \left.\frac{\partial(F,G)}{\partial(y,z)}\right|_{P_0}\ne0 ∂(y,z)∂(F,G)​∣∣∣​P0​​​=0,可以求解关于 d x , d y , d z \text{d}x,\text{d}y,\text{d}z dx,dy,dz的方程组 { F x ( P 0 ) d x + F y ( P 0 ) d y + F z ( P 0 ) d z G x ( P 0 ) d x + G y ( P 0 ) d y + G z ( P 0 ) d z \begin{cases}F_x(P_0)\text dx+F_y(P_0)\text dy+F_z(P_0)\text dz\\G_x(P_0)\text dx+G_y(P_0)\text dy+G_z(P_0)\text dz\end{cases} {Fx​(P0​)dx+Fy​(P0​)dy+Fz​(P0​)dzGx​(P0​)dx+Gy​(P0​)dy+Gz​(P0​)dz​其任一个非零解 ( d x , d y , d z ) (\text dx,\text dy,\text dz) (dx,dy,dz)就是切向量。

二、弧长

弧长: s = lim ⁡ d → 0 ∑ i = 1 n ∥ P i − 1 P i → ∥ = ∫ α β ∥ r ˙ ( t ) ∥ d t = ∫ α β [ x ˙ ( t ) ] 2 + [ y ˙ ( t ) ] 2 + [ z ˙ ( t ) ] 2 d t s=\lim\limits_{d\to0}\sum\limits_{i=1}^n\left\|\overrightarrow{P_{i-1}P_i}\right\|=\int_\alpha^\beta\|\dot\bm r(t)\|\text dt=\int_\alpha^\beta\sqrt{[\dot x(t)]^2+[\dot y(t)]^2+[\dot z(t)]^2}\text dt s=d→0lim​i=1∑n​∥∥∥​Pi−1​Pi​ ​∥∥∥​=∫αβ​∥r˙(t)∥dt=∫αβ​[x˙(t)]2+[y˙​(t)]2+[z˙(t)]2 ​dt 可求长的曲线:上式极限存在 弧微分: d s = ∥ r ˙ ( t ) ∥ d t = [ x ˙ ( t ) ] 2 + [ y ˙ ( t ) ] 2 + [ z ˙ ( t ) ] 2 d t \text{d}s=\|\dot\bm r(t)\|\text dt=\sqrt{[\dot x(t)]^2+[\dot y(t)]^2+[\dot z(t)]^2}\text dt ds=∥r˙(t)∥dt=[x˙(t)]2+[y˙​(t)]2+[z˙(t)]2 ​dt 自然参数: r = r ( t ( s ) ) \bm r=\bm r(t(s)) r=r(t(s)), s s s为自然参数 应用:例如 d r d s \frac{\text d\bm r}{\text ds} dsdr​为单位向量, d x d s = cos ⁡ α , d y d s = cos ⁡ β , d z d s = cos ⁡ γ \frac{\text dx}{\text ds}=\cos\alpha,\frac{\text dy}{\text ds}=\cos\beta,\frac{\text dz}{\text ds}=\cos\gamma dsdx​=cosα,dsdy​=cosβ,dsdz​=cosγ

三、曲面的切平面与法线 参数方程: D ⊆ R 2 → R 3 D\subseteq\mathbb R^2\to\mathbb R^3 D⊆R2→R3, r = r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) \bm r=\bm r(u,v)=(x(u,v),y(u,v),z(u,v)) r=r(u,v)=(x(u,v),y(u,v),z(u,v)) u u u曲线:让 u u u变化, v v v不变: r = r ( u , v 0 ) = ( x ( u , v 0 ) , y ( u , v 0 ) , z ( u , v 0 ) ) \bm r=\bm r(u,v_0)=(x(u,v_0),y(u,v_0),z(u,v_0)) r=r(u,v0​)=(x(u,v0​),y(u,v0​),z(u,v0​)) v v v曲线:让 v v v变化, u u u不变: r = r ( u 0 , v ) = ( x ( u 0 , v ) , y ( u 0 , v ) , z ( u 0 , v ) ) \bm r=\bm r(u_0,v)=(x(u_0,v),y(u_0,v),z(u_0,v)) r=r(u0​,v)=(x(u0​,v),y(u0​,v),z(u0​,v)) 参数曲线网: u u u曲线族和 v v v曲线族构成 法向量:设 r u = ( x u , y u , z u ) , r v = ( x v , y v , z v ) \bm r_u=(x_u,y_u,z_u),\bm r_v=(x_v,y_v,z_v) ru​=(xu​,yu​,zu​),rv​=(xv​,yv​,zv​),则 r u × r v = ∣ i j k x u y u z u x v y v z v ∣ \bm r_u\times\bm r_v=\begin{vmatrix}\bm i&\bm j&\bm k\\x_u&y_u&z_u\\x_v&y_v&z_v\end{vmatrix} ru​×rv​=∣∣∣∣∣∣​ixu​xv​​jyu​yv​​kzu​zv​​∣∣∣∣∣∣​为法向量 正则点: r u × r v ≠ 0 \bm r_u\times\bm r_v\ne0 ru​×rv​​=0 切平面:设法向量为 ( A , B , C ) (A,B,C) (A,B,C),则切平面方程为 A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(x−x0​)+B(y−y0​)+C(z−z0​)=0 法线: x − x 0 ( t 0 ) A = y − y 0 ( t 0 ) B = z − z 0 ( t 0 ) C \frac{x-x_0(t_0)}A=\frac{y-y_0(t_0)}B=\frac{z-z_0(t_0)}C Ax−x0​(t0​)​=By−y0​(t0​)​=Cz−z0​(t0​)​一般式方程: F ( x , y , z ) = 0 ⟹ F x d x + F y d y + F z d z = 0 F(x,y,z)=0\Longrightarrow F_x\text dx+F_y\text dy+F_z\text dz=0 F(x,y,z)=0⟹Fx​dx+Fy​dy+Fz​dz=0 法向量: ( F x , F y , F z ) (F_x,F_y,F_z) (Fx​,Fy​,Fz​) 切平面: F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0)=0 Fx​(x−x0​)+Fy​(y−y0​)+Fz​(z−z0​)=0 法线: x − x 0 ( t 0 ) F x = y − y 0 ( t 0 ) F y = z − z 0 ( t 0 ) F z \frac{x-x_0(t_0)}{F_x}=\frac{y-y_0(t_0)}{F_y}=\frac{z-z_0(t_0)}{F_z} Fx​x−x0​(t0​)​=Fy​y−y0​(t0​)​=Fz​z−z0​(t0​)​ z = f ( x , y ) z=f(x,y) z=f(x,y) 切平面: f x ( x − x 0 ) + f y ( y − y 0 ) − ( z − z 0 ) = 0 f_x(x-x_0)+f_y(y-y_0)-(z-z_0)=0 fx​(x−x0​)+fy​(y−y0​)−(z−z0​)=0或 z − z 0 = f x ( x − x 0 ) + f y ( y − y 0 ) z-z_0=f_x(x-x_0)+f_y(y-y_0) z−z0​=fx​(x−x0​)+fy​(y−y0​) 法线: x − x 0 ( t 0 ) f x = y − y 0 ( t 0 ) f y = z − z 0 ( t 0 ) − 1 \frac{x-x_0(t_0)}{f_x}=\frac{y-y_0(t_0)}{f_y}=\frac{z-z_0(t_0)}{-1} fx​x−x0​(t0​)​=fy​y−y0​(t0​)​=−1z−z0​(t0​)​ 四、Frenet标架

定义 r ′ = d r d s , r ˙ = d r d t \bm r'=\frac{\text d\bm r}{\text ds},\dot\bm r=\frac{\text d\bm r}{\text dt} r′=dsdr​,r˙=dtdr​

1. 法平面与切线

切向量(Tangent Vector): r ˙ ( t 0 ) = d r d s d s d t = r ′ d s d t = ∥ r ˙ ∥ r ′ \dot\bm r(t_0)=\frac{\text d\bm r}{\text ds}\frac{\text ds}{\text dt}=\bm r'\frac{\text ds}{\text dt}=\|\dot\bm r\|\bm r' r˙(t0​)=dsdr​dtds​=r′dtds​=∥r˙∥r′,故 r ′ \bm r' r′也是切向量,且是单位切向量,记作 T ( s 0 ) \bm T(s_0) T(s0​) T ( s 0 ) = r ′ ( s 0 ) = r ˙ ∥ r ˙ ∥ \bm T(s_0)=\bm r'(s_0)=\frac{\dot\bm r}{\|\dot\bm r\|} T(s0​)=r′(s0​)=∥r˙∥r˙​法平面:其法向量是切向量

2. 密切平面与次法线

密切平面:将 r ( s 0 ) \bm r(s_0) r(s0​)处的切线与 r ( s 0 + Δ s ) \bm r(s_0+\Delta s) r(s0​+Δs)处的切线确定的平面记作 π ′ \pi' π′,当 Δ s → 0 \Delta s\to0 Δs→0时 π ′ \pi' π′趋于 π \pi π,则称 π \pi π为与曲线最贴近的平面,称作密切平面 次法向量(Binormal Vector):密切平面的法向量,记作 B ( S 0 ) \bm B(S_0) B(S0​) B ( s 0 ) = ( r ′ ( s 0 ) × r ′ ′ ( s 0 ) ) 0 = r ˙ × r ¨ ∥ r ˙ × r ¨ ∥ \bm B(s_0)=(\bm r'(s_0)\times\bm r''(s_0))^0=\frac{\dot\bm r\times\ddot\bm r}{\|\dot\bm r\times\ddot\bm r\|} B(s0​)=(r′(s0​)×r′′(s0​))0=∥r˙×r¨∥r˙×r¨​

3. 从切平面与主法线

主法向量(Normal Vector):就是法向加速度,即速度变化的方向。 考虑物体运动的方程为 r = r ( t ) \bm r=\bm r(t) r=r(t),速度为 v = r ˙ \bm v=\dot\bm r v=r˙,加速度为 a = r ¨ \bm a=\ddot\bm r a=r¨。将速度写成 v = ∥ r ˙ ∥ r ′ \bm v=\|\dot\bm r\|\bm r' v=∥r˙∥r′,则 a = d v d t = d ∥ r ˙ ∥ d t r ′ + ∥ r ˙ ∥ d r ′ d t \bm a=\frac{\text d\bm v}{\text dt}=\frac{\text d\|\dot\bm r\|}{\text dt}\bm r'+\|\dot\bm r\|\frac{\text d\bm r'}{\text dt} a=dtdv​=dtd∥r˙∥​r′+∥r˙∥dtdr′​其中 a n = ∥ r ˙ ∥ d r ′ d t \bm a_n=\|\dot\bm r\|\frac{\text d\bm r'}{\text dt} an​=∥r˙∥dtdr′​是法向加速度。而 d r ′ d t = d r ′ d s d s d t = r ′ ′ ∥ r ˙ ∥ \frac{\text d\bm r'}{\text dt}=\frac{\text d\bm r'}{\text ds}\frac{\text ds}{\text dt}=\bm r''\|\dot\bm r\| dtdr′​=dsdr′​dtds​=r′′∥r˙∥故 a n = r ′ ′ ∥ r ˙ ∥ 2 = r ′ ′ v 2 \bm a_n=\bm r''\|\dot\bm r\|^2=\bm r''v^2 an​=r′′∥r˙∥2=r′′v2定义此方向上的单位向量为主法向量: N ( s 0 ) = r ′ ′ ( s 0 ) ∥ r ′ ′ ( s 0 ) ∥ \bm N(s_0)=\frac{\bm r''(s_0)}{\|\bm r''(s_0)\|} N(s0​)=∥r′′(s0​)∥r′′(s0​)​,很难用 r ˙ \dot\bm r r˙和 r ¨ \ddot\bm r r¨直接计算,但我们有 N ( s 0 ) = B ( s 0 ) × T ( s 0 ) \bm N(s_0)=\bm B(s_0)\times\bm T(s_0) N(s0​)=B(s0​)×T(s0​)注意不要乘反了,否则乘出来肯定是 0 \bm 0 0。

五、空间曲线的曲率与挠率 1. 曲率

曲率: κ = lim ⁡ Δ s → 0 ∣ Δ θ Δ s ∣ = ∥ T ′ ( s ) ∥ = ∥ r ′ ′ ( s ) ∥ = ∥ r ˙ × r ¨ ∥ ∥ r ˙ ∥ 3 \kappa=\lim\limits_{\Delta s\to0}\left|\frac{\Delta\theta}{\Delta s}\right|=\|\bm T'(s)\|=\|\bm r''(s)\|=\frac{\|\dot\bm r\times\ddot\bm r\|}{\|\dot\bm r\|^3} κ=Δs→0lim​∣∣∣∣​ΔsΔθ​∣∣∣∣​=∥T′(s)∥=∥r′′(s)∥=∥r˙∥3∥r˙×r¨∥​反映曲线切线方向的转动快慢程度。 对于平面曲线 r = ( x ( t ) , y ( t ) , 0 ) \bm r=(x(t),y(t),0) r=(x(t),y(t),0), κ = ∣ x ˙ y ¨ − y ˙ x ¨ ∣ [ x ˙ 2 + y ˙ 2 ] 3 2 \kappa=\frac{|\dot x\ddot y-\dot y\ddot x|}{[\dot x^2+\dot y^2]^{\frac32}} κ=[x˙2+y˙​2]23​∣x˙y¨​−y˙​x¨∣​对于平面曲线 y = y ( x ) y=y(x) y=y(x), κ = ∣ y ′ ′ ∣ [ 1 + y ′ 2 ] 3 2 \kappa=\frac{|y''|}{[1+y'^2]^\frac32} κ=[1+y′2]23​∣y′′∣​曲率半径: ρ = 1 κ \rho=\frac1\kappa ρ=κ1​

2. 挠率

挠率: τ ( s ) = − B ′ ( s ) ⋅ N ( s ) = [ r ′ ( s ) r ′ ′ ( s ) r ′ ′ ′ ( s ) ] ∥ r ′ ′ ( s ) ∥ 2 = [ r ˙ ( t ) r ¨ ( t ) d 3 r d t 3 ] ∥ r ˙ ( t ) × r ¨ ( t ) ∥ 2 \tau(s)=-\bm B'(s)\cdot\bm N(s)=\frac{[\bm r'(s)\quad\bm r''(s)\quad\bm r'''(s)]}{\|\bm r''(s)\|^2}=\frac{[\dot\bm r(t)\quad\ddot\bm r(t)\quad\frac{\text d^3\bm r}{\text dt^3}]}{\|\dot\bm r(t)\times\ddot\bm r(t)\|^2} τ(s)=−B′(s)⋅N(s)=∥r′′(s)∥2[r′(s)r′′(s)r′′′(s)]​=∥r˙(t)×r¨(t)∥2[r˙(t)r¨(t)dt3d3r​]​同时有 ∣ τ ( s ) ∣ = ∥ B ′ ( s ) ∥ |\tau(s)|=\|\bm B'(s)\| ∣τ(s)∣=∥B′(s)∥ 反映曲线偏离密切平面的程度。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有