机器视觉应用中的图像数据增广综述 您所在的位置:网站首页 图像增强技术在机器视觉中的应用 机器视觉应用中的图像数据增广综述

机器视觉应用中的图像数据增广综述

2024-07-03 11:03| 来源: 网络整理| 查看: 265

[1]  GARCIA GARCIA A, ORTS ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv:1704.06857, 2017. [2]  WANG Y, ZHANG H J, HUANG H X. A survey of image semantic segmentation algorithms based on deep learning[J]. Application of Electronic Technique, 2019, 45(6): 23-27. 王宇, 张焕君, 黄海新. 基于深度学习的图像语义分割算法综述[J]. 电子技术应用, 2019, 45(6): 23-27. [3]  TIAN X, WANG L, DING Q. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(2): 440-468. 田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 440-468. [4]  HINTON G E, SALAKHUTDINOV R R. Reducing the   dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [5]  KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-net classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114. [6]  LIN M, CHEN Q, YAN S C. Network in network[C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 1-10. [7]  SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [8]  VISIN F, KASTNER K, CHO K, et al. A recurrent neural network based alternative to convolutional networks[J]. arXiv:1505.00393, 2015. [9]  SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9. [10]   HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [11]   SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2818-2826. [12]   SZEGEDY C, IOFFE S, VANHOUCKE V. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 4278-4284. [13]   HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017. [14]   SANDLER M, HOWARD A G, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 4510-4520. [15]   HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[J]. arXiv:1905.02244, 2019. [16]   HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2261-2269. [17]   TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[J]. arXiv:1905.11946, 2019. [18]   XIE S N, GIRSHICK R B, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5987-5995. [19]   ZHANG H, WU C, ZHANG Z, et al. ResNeSt: split-attention networks[J]. arXiv:2004.08955, 2020. [20]   SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 843-852. [21]   MA D A, TANG P, ZHAO L J, et al. Review of data augmentation for image in deep learning[J/OL]. Journal of Image and Graphics[2020-09-25]. http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=202003150000002. 马岽奡, 唐娉, 赵理君, 等. 深度学习中的图像数据增广  方法研究综述[J/OL]. 中国图象图形学报[2020-09-25]. http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=202003150000002. [22]   DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 248-255. [23]   KRIZHEVSKY A. Learning multiple layers of features from tiny images: TR-2009[R]. Toronto: University of Toronto, 2009. [24]   EVERINGHAM M, ESLAMI S A, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. [25]   MOTTAGHI R, CHEN X J, LIU X B, et al. The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 891-898. [26]   CHEN X J, MOTTAGHI R, LIU X B, et al. Detect what you can: detecting and representing objects using holistic models and body parts[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 1979-1986. [27]   HARIHARAN B, ARBELáEZ P, BOURDEV L D, et al. Semantic contours from inverse detectors[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 991-998. [28]   LIN T Y, MAIRE M, BELONGIE S J, et al. Microsoft    coco: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [29]   ROS G, SELLART L, MATERZYNSKA J, et al. The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3234-3243. [30]   CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset[C]//Proceedings of the CVPR Workshop on the Future of Datasets in Vision, Boston, 2015: 1-4. [31]   CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,  Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3213- 3223. [32]   BROSTOW G J, SHOTTON J, FAUQUEUR J, et al. Segmentation and recognition using structure from motion point clouds[C]//LNCS 5302: Proceedings of the 10th European Conference on Computer Vision, Marseille, Oct 12-18, 2008. Berlin, Heidelberg: Springer, 2008: 44-57. [33]   GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. [34]   PREST A, LEISTNER C, CIVERA J, et al. Learning object class detectors from weakly annotated video[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 3282-3289. [35]   SHEN X Y, HERTZMANN A, JIA J Y, et al. Automatic portrait segmentation for image stylization[J]. Computer Graphics Forum, 2016, 35(2): 93-102. [36]   BELL S, UPCHURCH P, SNAVELY N, et al. Material recognition in the wild with the materials in context database[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3479-3487. [37]   PERAZZI F, PONT-TUSET J, MCWILLIAMS B, et al. A benchmark dataset and evaluation methodology for video object segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 724-732. [38]   PONT-TUSET J, PERAZZI F, CAELLES S, et al. The 2017 DAVIS challenge on video object segmentation[J]. arXiv:1704.00675, 2017. [39]   GOULD S, FULTON R, KOLLER D. Decomposing a scene into geometric and semantically consistent regions[C]//Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto, Sep 27-Oct 4, 2009. Piscataway: IEEE, 2009: 1-8. [40]   LIU C, YUEN J, TORRALBA A. Nonparametric scene parsing: label transfer via dense scene alignment[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-15, 2009. Washington: IEEE Computer Society, 2009: 1972-1979. [41]   HUSSAIN Z, GIMENEZ F, YI D, et al. Differential data augmentation techniques for medical imaging classification tasks[C]//Proceedings of the American Medical Informatics Association Annual Symposium, Washington, Nov 4-8, 2017: 979. [42]   LIN C C, ZHAO G S, YIN A H, et al. A novel chromosome cluster types identification method using ResNeXt WSL model[J]. Medical Image Analysis, 2021, 69: 101943. [43]   MA R, TAO P, TANG H. Optimizing data augmentation for semantic segmentation on small-scale dataset[C]//Proceedings of the 2nd International Conference on Control and Computer Vision. New York: ACM, 2019: 77-81. [44]   KOBAYASHI K, TSUJI J, NOTO M. Evaluation of data augmentation for image-based plant disease detection[C]//Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Oct 7-10, 2018. Piscataway: IEEE, 2018: 2206-2211. [45]   HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 558-567. [46]   ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 8697-8710. [47]   CUBUK E D, ZOPH B, MANE D, et al. AutoAugment: learning augmentation strategies from data[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 113-123. [48]   YU X, WU X, LUO C, et al. Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework[J]. GIScience & Remote Sensing, 2017, 54(5): 741-758. [49]   ZHANG H Y, CISSé M, DAUPHIN Y N, et al. mixup: beyond empirical risk minimization[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-13. [50]   INOUE H. Data augmentation by pairing samples for images classification[J]. arXiv:1801.02929, 2018. [51]   BERTHELOT D, CARLINI N, GOODFELLOW I J, et al. MixMatch: a holistic approach to semi-supervised learning[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019: 5050-5060. [52]   WONG S C, GATT A, STAMATESCU V, et al. Understanding data augmentation for classification: when to warp?[C]//Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications, Gold Coast, Nov 30-Dec 2, 2016. Piscataway: IEEE, 2016: 1-6. [53]   TOKOZUME Y, USHIKU Y, HARADA T. Between-class learning for image classification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 5486-5494. [54]   VERMA V, LAMB A, BECKHAM C, et al. Manifold mixup: encouraging meaningful on-manifold interpolation as a regularizer[J]. arXiv:1806.05236, 2018. [55]   ARAZO E, ORTEGO D, ALBERT P, et al. Unsupervised label noise modeling and loss correction[J]. arXiv:1904. 11238, 2019. [56]   YAGUCHI Y, SHIRATANI F, IWAKI H. Mixfeat: mix feature in latent space learns discriminative space[EB/OL].[2020-09-25]. https://openreview.net/forum?id=HygT9oRqFX. [57]   LIANG D J, YANG F, ZHANG T, et al. Understanding mixup training methods[J]. IEEE Access, 2018, 6: 58774-58783. [58]   GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680. [59]   LENG B, YU K, QIN J Y. Data augmentation for unbalanced face recognition training sets[J]. Neurocomputing, 2017, 235: 10-14. [60]   ZHU X Y, LIU Y F, LI J H, et al. Emotion classification with data augmentation using generative adversarial networks[C]//LNCS 10939: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, Jun 3-6, 2018. Cham: Springer, 2018: 349-360. [61]   FRID-ADAR M, DIAMANT I, KLANG E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification[J]. Neurocomputing, 2018, 321: 321-331. [62]   PEREZ L, WANG J. The effectiveness of data augmentation in image classification using deep learning[J]. arXiv:1712.04621, 2017. [63]   ANTONIOU A, STORKEY A, EDWARDS H. Data augmentation generative adversarial networks[J]. arXiv:1711. 04340, 2017. [64]   FAWZI A, SAMULOWITZ H, TURAGA D S, et al. Adaptive data augmentation for image classification[C]//Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 3688-3692. [65]   LEMLEY J, BAZRAFKAN S, CORCORAN P. Smart augmentation learning an optimal data augmentation strategy[J]. IEEE Access, 2017, 5: 5858-5869. [66]   RATNER A J, EHRENBERG H R, HUSSAIN Z, et al. Learning to compose domain-specific transformations for data augmentation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 3236-3246. [67]   TRAN T, PHAM T, CARNEIRO G, et al. A Bayesian data augmentation approach for learning deep models[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 2797-2806. [68]   GENG M, XU K, DING B, et al. Learning data augmentation policies using augmented random search[J]. arXiv:1811.04768, 2018. [69]   LIN C, GUO M, LI C M, et al. Online hyper-parameter learning for auto-augmentation strategy[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6579-6588. [70]   HO D, LIANG E, STOICA I, et al. Population based augmentation: efficient learning of augmentation policy schedules[J]. arXiv:1905.05393, 2019. [71]   SPINELLI I, SCARDAPANE S, SCARPINITI M, et al. Efficient data augmentation using graph imputation neural networks[J]. arXiv:1906.08502, 2019. [72]   DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[J]. arXiv:1708. 04552, 2017. [73]   ZHANG L, ZHAO J Y, YE X L, et al. Co-operative generative adversarial nets[J]. Acta Automatica Sinica, 2018, 44(5): 804-810. 张龙, 赵杰煜, 叶绪伦, 等. 协作式生成对抗网络[J]. 自动化学报, 2018, 44(5): 804-810. [74]   HUANG S, ZHONG Z, JIN L, et al. Dropregion training of inception font network for high-performance Chinese font recognition[J]. Pattern Recognition, 2018, 77: 395-411. [75]   ZHAO C Y, ZHENG Y G, WANG X K. Fuzzy enhancement algorithm based on histogram[J]. Computer Engineering, 2005, 31(12): 185-186. 赵春燕, 郑永果, 王向葵. 基于直方图的图像模糊增强算法[J]. 计算机工程, 2005, 31(12): 185-186. [76]   ZHONG Z, ZHENG L, KANG G, et al. Random erasing  data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 13001-13008. [77]   ZHANG X X, YANG Y M. Common color space and its conversions in color image project[J]. Computer Engineering and Design, 2008, 29(5): 1210-1212. 张学习, 杨宜民. 彩色图像工程中常用颜色空间及其转换[J]. 计算机工程与设计, 2008, 29(5): 1210-1212. [78]   GALDRAN A, ALVAREZ-GILA A, MEYER M I, et al. Data-driven color augmentation techniques for deep skin image analysis[J]. arXiv:1703.03702, 2017. [79]   WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms[J]. Chinese Journal of Optics, 2017, 10(4): 438-448. 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学, 2017, 10(4): 438-448. [80]   BHAT P, CURLESS B, COHEN M F, et al. Fourier analysis of the 2d screened poisson equation for gradient domain problems[C]//LNCS 5303: Proceedings of the 10th European Conference on Computer Vision, Marseille, Oct 12-18, 2008. Berlin, Heidelberg: Springer, 2008: 114-128. [81]   GONZALES A M, GRIGORYAN A M. Fast Retinex for color image enhancement: methods and algorithms[C]//SPIE 9411: Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2015. San Francisco: SPIE, 2015. [82]   SHEN C T, HWANG W L. Color image enhancement using Retinex with robust envelope[C]//Proceedings of the 2009 16th IEEE International Conference on Image Processing, Cairo, Nov 7-10, 2009. Piscataway: IEEE, 2009: 3141-3144. [83]   LI X M. Image enhancement algorithm based on Retinex theory[J]. Application Research of Computers, 2005, 22(2): 235-237. 李学明. 基于 Retinex 理论的图像增强算法[J]. 计算机应用研究, 2005, 22(2): 235-237. [84]   XU L, CHEN X C. A novel method for image enhancement of medical images based on wavelet phase filter and nonlinear human visual properties[J]. Acta Electronica Sinica, 1999, 27(9): 121-123. 许雷, 陈兴灿. 一种基于小波相位滤波及视觉非线性的医学图像自适应增强新方法[J]. 电子学报, 1999, 27(9): 121-123. [85]   XIE F Y, TANG M, ZHANG R. Review of image enhancement algorithms based on Retinex[J]. Journal of Data Acquisition and Processing, 2019, 34(1): 1-11. 谢凤英, 汤萌, 张蕊. 基于 Retinex 的图像增强方法综述[J]. 数据采集与处理, 2019, 34(1): 1-11. [86]   JUNG A B, WADA K, CRALL J, et al. Imgaug[EB/OL].[2020-09-25]. https://github. com/aleju/imgaug. [87]   BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations: fast and flexible image augmentations[J]. Information, 2020, 11(2): 125. [88]   GUO H, MAO Y, ZHANG R. Mixup as locally linear out-of-manifold regularization[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3714-3722. [89]   HARRIS E, MARCU A, PAINTER M, et al. Understanding and enhancing mixed sample data augmentation[J]. arXiv:2002.12047, 2020. [90]   TAKAHASHI R, MATSUBARA T, UEHARA K. Ricap: random image cropping and patching data augmentation for deep CNNs[C]//Proceedings of the 10th Asian Conference on Machine Learning, Beijing, Nov 14-16, 2018: 786-798. [91]   YUN S, HAN D, OH S J, et al. CutMix: regularization  strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6023-6032. [92]   DWIBEDI D, MISRA I, HEBERT M. Cut, paste and learn: surprisingly easy synthesis for instance detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1301-1310. [93]   SUMMERS C, DINNEEN M J. Improved mixed-example data augmentation[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Jan 7-11, 2019. Piscataway: IEEE, 2019: 1262-1270. [94]   TOKOZUME Y, USHIKU Y, HARADA T. Learning from between-class examples for deep sound recognition[J]. arXiv:1711.10282, 2017. [95]   SHIMADA T, YAMAGUCHI S, HAYASHI K, et al. Data interpolating prediction: alternative interpretation of mixup[J]. arXiv:1906.08412, 2019. [96]   OKI H, KURITA T. Mixup of feature maps in a hidden layer for training of convolutional neural network[C]//LNCS 11302: Proceedings of the 25th International Conference on Neural Information Processing, Siem Reap, Dec 13-16, 2018. Cham: Springer, 2018: 635-644. [97]   VERMA V, LAMB A, BECKHAM C, et al. Manifold mixup: better representations by interpolating hidden states[J]. arXiv:1806.05236, 2018. [98]   JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015: 2017-2025. [99]   TAKEKI A, IKAMI D, IRIE G, et al. Parallel grid pooling for data augmentation[J]. arXiv:1803.11370, 2018. [100] LIU X, ZOU Y, KONG L, et al. Data augmentation via latent space interpolation for image classification[C]//Proceedings of the 24th International Conference on Pattern Recognition, Beijing, Aug 20-24, 2018. Piscataway: IEEE, 2018: 728-733. [101] LI B, WU F, LIM S N, et al. On feature normalization and data augmentation[J]. arXiv:2002.11102, 2020. [102] DEVRIES T, TAYLOR G W. Dataset augmentation in feature space[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017. [103] HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert Systems with Applications, 2018, 95: 43-56. [104] LIANG X, HU Z, ZHANG H, et al. Recurrent topic-transition GAN for visual paragraph generation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3382-3391. [105] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [106] MA C G, GUO Y Y, WU P, et al. Review of image enhancement based on generative adversarial networks[J]. Netinfo Security, 2019, 19(5): 10-21. 马春光, 郭瑶瑶, 武朋, 等. 生成式对抗网络图像增强研究综述[J]. 信息网络安全, 2019, 19(5): 10-21. [107] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2642-2651. [108] MARIANI G, SCHEIDEGGER F, ISTRATE R, et al. BaGAN: data augmentation with balancing GAN[J]. arXiv:1803.09655, 2018. [109] HUANG L, LIN K C J, TSENG Y C. Resolving intra-class imbalance for GAN-based image augmentation[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo, Shanghai, Jul 8-12, 2019. Piscataway: IEEE, 2019: 970-975. [110] SINGH A, DUTTA D, SAHA A. MIGAN: malware image synthesis using GANs[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 10033-10034. [111] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266): 1332-1338. [112] COHEN G, AFSHAR S, TAPSON J, et al. EMNIST: an extension of MNIST to handwritten letters[J]. arXiv:1702. 05373, 2017. [113] LARSEN A B L, S?NDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[J]. arXiv:1512.09300, 2015. [114] DENTON E L, CHINTALA S, FERGUS R, et al. Deep generative image models using a Laplacian pyramid of adversarial networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal,?Dec 7-12, 2015: 1486-1494. [115] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015. [116] ZHANG H, XU T, LI H, et al. StackGAN: text to photo- realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5907-5915. [117] ZHAO J, MATHIEU M, LECUN Y. Energy-based generative adversarial network[J]. arXiv:1609.03126, 2016. [118] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[J]. arXiv:1710.10196, 2017. [119] ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[J]. arXiv:1805. 08318, 2018. [120] CHEN X, DUAN Y, HOUTHOOFT R, et al. Info-GAN: interpretable representation learning by information maximizing generative adversarial nets[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016: 2172-2180. [121] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2223-2232. [122] BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019. [123] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J]. arXiv:1701.07875, 2017. [124] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017: 5769-5779. [125] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2794-2802. [126] QI G J. Loss-sensitive generative adversarial networks on Lipschitz densities[J]. arXiv:1701.06264, 2017. [127] NOWOZIN S, CSEKE B, TOMIOKA R. F-GAN: training generative neural samplers using variational divergence minimization[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016: 271-279. [128] METZ L, POOLE B, PFAU D, et al. Unrolled generative adversarial networks[J]. arXiv:1611.02163, 2016. [129] CHE T, LI Y, JACOB A P, et al. Mode regularized generative adversarial networks[J].  arXiv:1612.02136, 2016. [130] JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[J]. arXiv: 1807.00734, 2018. [131] FRID-ADAR M, KLANG E, AMITAI M, et al. Synthetic data augmentation using GAN for improved liver lesion classification[C]//Proceedings of the 15th IEEE International Symposium on Biomedical Imaging, Washington, Apr 4-7, 2018. Piscataway: IEEE, 2018: 289-293. [132] SHIN H C, TENENHOLTZ N A, ROGERS J K, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks[C]//LNCS 11037: Proceedings of the 2018 International Workshop on Simulation and Synthesis in Medical Imaging, Granada, Sep 16, 2018. Cham: Springer, 2018: 1-11. [133] HUANG R, XIE X, LAI J, et al. Conditional face synthesis for data augmentation[C]//LNCS 11258: Proceedings of the 2018 Chinese Conference on Pattern Recognition and Computer Vision, Guangzhou, Nov 23-26, 2018. Cham: Springer, 2018: 137-149. [134] HAN C, MURAO K, SATOH S, et al. Learning more with less: GAN-based medical image augmentation[J]. Medical Imaging Technology, 2019, 37(3): 137-142. [135] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [136] CISSE M, BOJANOWSKI P, GRAVE E, et al. Parseval networks: improving robustness to adversarial examples[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 854-863. [137] STOCK P, CISSE M. ConvNets and ImageNet beyond accuracy: understanding mistakes and uncovering biases[C]//LNCS 11210: Proceedings of the 2018 European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 498-512. [138] SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015: 3483-3491. [139] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. arXiv: 1906.06972, 2019. [140] HUANG H, YU P S, WANG C. An introduction to image synthesis with generative adversarial nets[J]. arXiv:1803. 04469, 2018. [141] HOSHEN Y, LI K, MALIK J. Non-adversarial image synthesis with generative latent nearest neighbors[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5811-5819. [142] VASCONCELOS C N, VASCONCELOS B N. Increasing deep learning melanoma classification by classical and expert knowledge based image transforms[J].  arXiv:1702. 07025, 2017. [143] CHEN C, LI W J, CHEN L, et al. An adaptive biomimetic image processing method: LDRF algorithm[J]. CAAI Transactions on Intelligent Systems, 2012, 7(5): 404-408. 谌琛, 李卫军, 陈亮, 等. 一种自适应的仿生图像增强方法: LDRF 算法[J]. 智能系统学报, 2012, 7(5): 404-408. [144] LIU M, XIE Z, HUANG Y, et al. Distilling GRU with data augmentation for unconstrained handwritten text recognition[C]//Proceedings of the 2018 16th International Conference on Frontiers in Handwriting Recognition, Niagara Falls, Aug 5-8, 2018. Piscataway: IEEE, 2018: 56-61. [145] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [146] LECUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, Jun 27-Jul 2, 2004. Washington: IEEE Computer Society, 2004: 97-104. [147] PHILLIPS P J, MOON H, RIZVI S A, et al. The FERET evaluation methodology for face-recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104. [148] LIM S, KIM I, KIM T, et al. Fast autoaugment[J]. arXiv: 1905.00397, 2019. [149] ZHANG J, WU Q, ZHANG J, et al. Mind your neighbours: image annotation with metadata neighbouhood graph co-attention networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2956-2964. [150] WEI K, YANG J, FU Y, et al. Single image reflection removal exploiting misaligned training data and network enhancements[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8178-8187. [151] YI K, WU J. Probabilistic end-to-end noise correction for learning with noisy labels[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7017-7025. [152] PARK J, LEE J Y, YOO D, et al. Distort-and-recover: color enhancement using deep reinforcement learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 5928-5936. [153] LIU B, WANG X, DIXIT M, et al. Feature space transfer for data augmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 9090-9098. [154] CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment: practical automated data augmentation with a reduced search space[J]. arXiv:1909.13719, 2019.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有