S6(R1).生物技术药物的临床前安全性评价 您所在的位置:网站首页 人大数据统计专业 S6(R1).生物技术药物的临床前安全性评价

S6(R1).生物技术药物的临床前安全性评价

#S6(R1).生物技术药物的临床前安全性评价| 来源: 网络整理| 查看: 265

人用药品注册技术要求国际协调会ICH 三方协调指导原则生物技术药物的临床前安全性评价S6(R1)

1997年7月16日总指导原则现行第四阶段版本2011年6月底整合2011年6月12日的附录

本指导原则由相应的ICH专家小组制定,按照ICH进程,已递交管理部门讨论。在ICH进程第四阶段,最终草案被推荐给欧盟、日本和美国的管理机构采纳。

S6(R1).生物技术药物的临床前安全性评价_1.jpg

目录

第I部分:  

1. 前言 

1.1 背景

1.2 目的

1.3 范围

2. 受试物的质量标准

3. 临床前安全性试验

3.1 一般原则

3.2 生物活性/药效学

3.3 动物种属/模型选择

3.4 动物的数量/性别

3.5 给药途径/剂量选择

3.6 免疫原性

4. 特殊考虑

4.1 安全药理学

4.2 暴露评价

4.2.1 药代动力学和毒代动力学

4.2.2 测定

4.2.3 代谢

4.3 单次给药毒性研究

4.4 重复给药毒性研究

4.5 免疫毒性研究

4.6 生殖能力和发育毒性研究

4.7 遗传毒性研究

4.8 致癌性研究

4.9 局部耐受性研究

注释

第II部分:

1. 前言

1.1 附录目的

1.2 背景

1.3 指导原则的范围

2. 种属的选择

2.1 一般原则

2.2 一或两个种属

2.3 同源蛋白的使用

3. 研究设计

3.1 剂量选择和PK/PD原则的应用

3.2 研究期限

3.3 恢复

3.4 探索性临床研究

4. 免疫原性

5. 生殖和发育毒性

5.1 一般评论

5.2 生育能力

5.3 胚胎 – 胎儿发育(EFD)和出生前/后的发育(PPND)

5.4 研究的时间安排

6. 致癌性

注释

参考文献

第I部分:生物技术药物的临床前安全性评价ICH三方协调指导原则

在1997年7月16日的ICH指导委员会会议上进入ICH进程第四阶段,本指导原则被推荐给三方ICH管理机构采纳。

1. 前言

1.1 背景

生物技术药物(生物药物)的开发始于20世纪80年代初。80年代后期批准了第一个上市许可。对于生物技术药物的安全性评价,不同的管理机构已发布了一些指导原则和考虑要点文件。

管理机构对这些文件的回顾,可能会为开发新生物药物提供有用的背景资料。

目前,生物药物的申报已积累了大量的经验。对这些经验的重要回顾,为本指导原则的制定奠定了基础。本文的目的在于为设计科学合理的临床前安全性评价试验提供总体原则。

1.2 目的

目前,欧盟、日本和美国对于生物技术药物的监管标准基本一致。三方均采用灵活、个案处理和基于科学的方法评价临床前安全性,支持临床开发和上市许可。在这一快速发展的科学领域,需要地区之间达成共识并且保持持续对话。

临床前安全性评价的主要目的是:

1)确定人体使用的安全起始剂量和随后的剂量递增方案;

2)确定潜在毒性靶器官并研究这种毒性是否可逆;以及

3)确定临床监测的安全性参数。本文件提供的原则旨在提高支持性临床前安全性数据的质量和一致性,以利于生物药物的开发。

1.3 范围

本指导原则的主要目的是推荐一种评价生物技术药物临床前安全性的基本模式,适用于采用多种表达系统的已鉴定细胞(如细菌、真菌、昆虫、植物和哺乳动物细胞)所制备的产品。

这些产品可用于体内诊断、治疗或预防。其活性物质包括蛋白质、多肽及其衍生物或由其组成的产品;它们可能是细胞培养衍生物,或者采用重组DNA技术,包括通过转基因植物和动物生产的产品。例如(包括但不限于):细胞因子、纤维蛋白溶酶原激活因子、重组血浆因子、生长因子、融合蛋白、酶、受体、激素和单克隆抗体。

本文中的原则可能也适用于重组DNA蛋白疫苗、化学合成多肽、血浆衍生产品、从人组织提取的内源性蛋白和寡核苷酸药物。

本文件适用范围不包括抗生素、变应原提取物、肝素、维生素、血细胞成分、常规的细菌或病毒疫苗、DNA疫苗或者细胞和基因疗法。

2. 受试物的质量标准

安全性考虑可能涉及药物中存在的杂质或污染物。最好通过纯化处理去除杂质和污染物,而不是为确保其质量建立一套临床前研究计划。在任何情况下,都应该充分确证产品的特征,以便对临床前安全性研究进行合理设计。

宿主细胞如细菌、酵母、昆虫、植物和哺乳动物细胞的污染存在潜在的危险性。宿主细胞污染物可导致过敏反应和其他免疫病理学反应。理论上有与核酸污染物相关的不良反应,但也存在整合到宿主细胞基因组的可能性。源于昆虫、植物和哺乳动物细胞或转基因植物和动物的产品,还可能有额外的病毒感染风险。

一般来讲,用于正规药理和毒理试验的产品应与拟用于初期临床试验的产品具有可比性。但是,在药物开发进程中允许为提高产品的质量和产量进行正常的生产工艺改进。但应考虑这种变更对于动物试验结果外推至人体的可能影响。

在药物开发过程中,如果采用了一种新的或改进的生产工艺,或者产品或处方出现了重大变更时,应证明产品的可比性。可比性评价可基于生化和生物学特征(即鉴别、纯度、稳定性和效价)。有些情况下可能需要进行附加研究(即药代动力学、药效学和/或安全性研究)。应阐明所用方法的科学合理性。

3. 临床前安全性试验

3.1 一般原则

临床前安全性研究的目的在于解释人体研究启动前至整个临床开发过程中的药理学和毒理学作用。体外和体内研究都有助于确定这种特性。对于那些在结构和药理作用上与已大量临床使用的产品类似的生物药物,可酌情减少毒性试验。

临床前安全性试验应考虑:

1)相关动物种属的选择;

2)年龄;

3)生理状态;

4)给药方式,包括剂量、给药途径和给药方案;

5)受试品在使用条件下的稳定性。

毒性试验应遵循药物非临床试验质量管理规范(GLP);但因为有些生物药物往往需要采用特殊试验系统,可能无法完全符合GLP的要求。应区分不符合GLP的条件,并且评价其相对于总体安全性评价的相对意义。在某些情况下,不完全符合GLP要求并不一定意味着这些试验数据不能用于支持临床试验和上市许可。

药物毒性试验的常规方法不一定适用于生物药物,因为后者结构和生物学性质具有专一性和多样性,包括种属特异性、免疫原性和非预期的多功能活性。

3.2 生物活性/药效学

生物活性可用体外测定法评价,以确定产品的何种作用及与临床药效的相关性。细胞系和/或原代细胞培养的应用,可能有助于检测药物对细胞表型和增殖的直接作用。因为许多生物技术药物具有种属特异性,选择相关动物种属进行毒性试验非常重要。哺乳动物细胞系可用于预测体内活性的特异性,并且可以定量评价生物药物对不同种属(包括人类)的相对灵敏度。设计此类试验可测定受体结合、受体亲和力和/或药理作用,帮助选择合适的动物种属进行进一步的体内药理和毒理试验。综合考虑体外和体内试验结果有助于将发现的情况外推至人体。评价药理作用的体内研究,包括作用机理的解释,通常用于支持临床研究中产品拟定用途的合理性。

对于单克隆抗体,应详细描述抗体的免疫学特性,包括抗体的抗原特异性、补体结合、对人非靶组织的任何非预期反应和/或细胞毒性。应采用适当的免疫组织化学方法在一系列的人组织上进行此类交叉反应试验。

3.3 动物种属/模型选择

由于许多生物技术药物的生物学活性与种属和/或组织特异性相关,通常无法在常用种属(如大鼠和犬)中进行标准的毒性试验,而应使用相关种属动物。所谓相关种属,是指受试物在此类动物上,由于受体或抗原决定簇(对单克隆抗体而言)的表达,能产生药理学活性。可以使用多种技术(如免疫化学或者功能试验)确定相关种属。有关受体/抗原决定簇分布的知识,有助于更多的了解潜在的体内毒性。

用于单克隆抗体试验的相关动物种属应能表达所预期的抗原决定簇,并能证明其与人体组织具有类似的组织交叉反应。这将使评价结合抗原决定簇所致毒性和任何非预期组织交叉反应的能力显著提高。如果能证明非预期的组织交叉反应与人体相似,即使是一种不表达预期抗原决定簇的动物种属,对毒性评价仍有一定意义。

安全性评价项目中一般应包括两种相关种属的动物,但在某些已经证明合理的情况下(如只能确定一种相关种属的动物,或对该生物药物的生物学活性已经十分了解),一种相关种属可能已足够。此外,即使短期毒性研究中必须用两种动物确定毒性,随后的长期毒性研究可能仍有理由使用一种动物(如当两种动物的短期毒性试验结果相似时)。

不相关种属动物的毒性研究可能会产生误导,因而应避免。当无相关种属时,应该考虑使用表达人源受体的相关转基因动物或者使用同源蛋白。如果表达人源受体的相关转基因动物产品与人源受体的相互作用和人体的预期生理结果相似,可以完善使用此类产品而获取的信息。

尽管使用同源蛋白也能得到有用的信息,但应该注意到,同源蛋白和临床拟用的产品之间,在生产工艺、杂质/污染物的范围、药代动力学和确切的药理学机制方面都可能有不同之处。如不能使用转基因动物模型或者同源蛋白时,对采用单一种属进行的有限毒性评价(例如包括重要功能终点如心血管和呼吸系统评价的重复给药5,000 D)的蛋白质不会通过简单的扩散而穿过胎盘。对于分子量高至150,000 D的单克隆抗体,存在特异的转运机制,即能够决定胚胎暴露并且具有种属间差异的新生儿Fc受体(FcRn)。

在NHPs和人类中,IgG的胎盘转运率在器官形成期间很低,在妊娠中期的早期开始增加,在妊娠晚期的后期达到最高水平(5)。因此,尽管对胚胎的影响可以作为母体反应的间接结果进行评价,但是在NHPs中,给药时间最早从妊娠第50天开始的标准胚胎研究,可能对评价器官形成期间的直接胚胎影响并没有价值。此外,因为IgG只通过初始乳汁分泌(即在初乳中),在哺乳期的后期不再分泌,所以在NHPs中分娩后的母体给药通常没有意义。

啮齿类动物的情况不同于NHPs和人类,因为IgG能够通过FcRn转运机制穿过卵黄囊,而且在妊娠期间,啮齿类动物的暴露与NHPs和人类相比出现的相对较早。此外,啮齿类动物的分娩是在发育阶段,此时的幼崽没有达到与NHPs或者人类新生儿相同的成熟水平。因此,应该在哺乳期对大鼠/小鼠的分娩后母体给药,实现药物经由乳汁对幼崽的暴露,通过至少9天的哺乳直至后代达到与人类新生儿相同的发育阶段。

注释4

出生后观察的最短持续时间应该为1个月,以便进行早期功能性试验(如生长和行为)。

通常,如果在一般毒性研究中,有证据表明存在免疫系统(或者免疫功能)的不良反应,则应该在出生前后加强发育(ePPND)研究的产后期间,在后代中进行免疫功能试验。适当时,在出生后第28天即可尽早获得免疫表型。根据所采用的功能性试验,评价免疫功能的出生后观察的持续时间可以为3-6个月。

神经行为学评价可能仅限于临床行为观察结果。工具性学习需要一个训练期,该训练期持续时间至少为出生后9个月,因此不推荐。

注释 5

决定猕猴ePPND研究中各组动物数量的方法详细讨论见Jarvis等2010年的文献(6)。

ePPND研究中各组动物数量应该足以获得充分的幼崽数量(出生后第7天时,每组6-8个后代),以评价出生后发育,并在需要时(如评价免疫系统)能够进行专家评价。

大多数ePPND研究经过数周或数月实现动物妊娠。当某个试验项目组出现提示治疗相关作用的流产时,应该考虑终止研究中妊娠动物的进一步增加,并调整研究设计(如采用剖腹产)。

提倡经溶剂-对照处理母体动物的再利用。

如果存在作用机制可能导致对EFD的影响或流产的担忧,则可以在限定数量的动物中进行研究,以便确定危害。

注释6

在NHPs中进行的ePPND研究中期报告应该包括如下研究终点:

母体数据:生存情况、临床观察、体重、妊娠暴露数据(如果可以获得)、任何特异性的PD终点;

妊娠数据:研究开始时妊娠动物的数量、器官形成结束时(GD50)和GD100时的怀孕状态、出现的流产和流产的时间。在中期报告中,不需要超声检查来确定胚胎大小;因为可以获得实际的出生体重,因此这些检查并不重要;

怀孕结果数据:死胎/活胎的数量、幼崽出生体重、产后7天的幼崽存活情况和体重、外部形态学定性评价(即确定外观属于正常范围内)、幼崽暴露数据(如可获得)、幼崽的任何特异性PD终点(如适当)。

参考文献

1.png

附件:

S6(R1).生物技术药物的临床前安全性评价.docx

S6(R1) Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals.pdf



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有