南方科技大学知识苑(SUSTech KC): 低热膨胀低温封接玻璃的制备及其机理研究 您所在的位置:网站首页 为什么封接玻璃常常是含铅玻璃 南方科技大学知识苑(SUSTech KC): 低热膨胀低温封接玻璃的制备及其机理研究

南方科技大学知识苑(SUSTech KC): 低热膨胀低温封接玻璃的制备及其机理研究

2023-12-22 01:25| 来源: 网络整理| 查看: 265

[1] 马英仁. 封接玻 璃(九 ) —低熔玻璃 在电子元 器 件中的应用 [J]. 玻 璃 与搪瓷, 1994(01): 50–57. [2] 马立云, 王巍巍, 曹欣, 等. 无铅低熔点封接玻璃的研究进展[J]. 硅酸盐通报, 2018, 37(07): 2167–2172. [3] 高淑雅, 郭晓琛, 郭宏伟, 等. 硼酸盐在低温封接玻璃中的应用[J]. 无机盐工业, 2009, 41(12): 8–10. [4] 张贾伟, 张国平, 孙蓉, 等. 基于 OLED 器件的封装材料研究进展[J]. 集成技术, 2014, 3(06): 92–101. [5] LI Y, TIAN R, YIN L, et al. Experimental Study about the Effect of Frit Thickness on the Residual Stress of Glass/Glass Laser Bonding[J]. Optical Engineering, 2017, 56(8): 083103. [6] 何潜, 赵玉龙, 赵立波, 等. MEMS 耐高温压力传感器封装工艺研究[J]. 传感技术学报, 2008(02): 310–313. [7] 李国郡. 低温低膨胀封接玻璃的制备与性能研究[D]. 南京航空航天大学, 2020. [8] BEDJAOUI M, AMIRAN J, BRUN J. Ultrathin Glass to Ultrathin Glass Bonding Using Laser Sealing Approach[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). . [9] 李长久, 俞琳, 黄幼榕, 等. 封接玻璃热处理时间变化对润湿角的影响[J]. 电子玻璃技术(2010 年第 1、2 期), 2010: 112–119. [10] 马英仁. 封接玻璃(八)——三种低熔粉末玻璃焊料[J]. 玻璃与搪瓷, 1993(05): 46-50+6. [11] 赵偶. 低温封接玻璃的研究[D]. 湖南大学, 2007. [12] BOBKOVA N M. Low-Melting Glasses Based on Lead-Borate Systems (Review)[J]. Glass and Ceramics, 2009, 66(5): 206–209. [13] 李争. B2O3-ZnO-P2O5-R2O-V2O5 系无铅封接玻璃的研究[D]. 湖南大学, 2015. [14] BROW R K. Review: The Structure of Simple Phosphate Glasses[J]. Journal of Non-Crystalline Solids, 2000, 263–264: 1–28. [15] JENSEN J O, BANERJEE A, MERROW C N, et al. A Theoretical Study of P4O6: Vibrational Analysis and Infrared and Raman Spectra[J]. Journal of Molecular Structure: THEOCHEM, 2000, 531(1): 323–331. [16] SAITOH A, ANAN S, TAKEBE H. Surface Crystallization Behavior during Thermal Processing of Low-Photoelastic ZnO-SnO-P2O5 Glasses[J]. Journal of Materials Science, 2017, 52(4): 2192–2199. [17] ISMAIL S F, SAHAR M R, GHOSHAL S K. Physical and Absorption Properties of Titanium Nanoparticles Incorporated into Zinc Magnesium Phosphate Glass[J]. Materials Characterization, 2016, 111: 177–182. [18] 詹文俊, 廖红卫, 李晓麟, 等. 新型 SnO-CaO-P2O5 系封接玻璃的组成设计及性能研究[J]. 陶瓷, 2018(12): 29–34. [19]KOUDELKA L, MOS̆NER P. Borophosphate Glasses of the ZnO-B2O3-P2O5 System[J]. Materials Letters, 2000, 42(3): 194–199. [20] GOJ P, CIECIŃSKA M, SZUMERA M, et al. Thermal Properties of Na2O-P2O5-Fe2O3Polyphosphate Glasses[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142(1): 203–209. [21] LI H, ZHU Z, YANG F, et al. Structure of V2O5-P2O5-Sb2O3-Bi2O3 Glass[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(7): 628 –635. [22] XIE F, JIA L, XU F, et al. Low-Firing Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 Ceramics Modified with V2O5-ZnO-B2O3 Glass Addition for Microwave Device Application[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5885 –5892. [23] SHARMA B I, PATTANAIK A K, SRINIVASAN A. Nonisothermal Properties of V2O5-SnO-TeO2 Glasses Exhibiting Majority Charge Carrier Reversal[J]. Physics and Chemistry of Glasses, 2002, 43(1): 12–15. [24] EL-MALLAWANY R, SAYYED M I, DONG M G. Comparative Shielding Properties of Some Tellurite Glasses: Part 2[J]. Journal of Non-Crystalline Solids, 2017, 474: 16–23. [25] 齐艳. P2O5-V2O5-ZnO 低熔无铅玻璃的制备及在导电银浆中的应用研究[D]. 哈尔滨工业大学, 2018. [26] 向鹏程, 孙诗兵, 田英良, 等. V2O5-TeO2-P2O5-Fe2O3 系无铅低熔点封接玻璃性能研究[J]. 硅酸盐通报, 2020, 39(04): 1277-1282+1295. [27] 万剑, 刘同心, 陈鹏. ZnO 对 V2O5-TeO2-B2O3-Bi2O3 系玻璃封接性能的影响[J]. 玻璃搪瓷与眼镜, 2020, 48(03): 1-6+34. [28] MATSUO F, KUBO S, KOUHARA Y, et al. Development of V2O5-ZnO-TeO2-(ZrO)2(HPO4)2 Sealing Glass with Low Melting Point and Low Thermal Expansion Properties[J]. KAGAKU KOGAKU RONBUNSHU, 2015, 41(4). [29] 李要辉, 王铁军, 王晋珍, 等. 基于 β-锂霞石负膨胀陶瓷填料的无铅低温封接玻璃结构性能研究[J]. 陶瓷学报, 2019, 40(04): 434–439. [30] GOLEUS V, HORDIEIEV Y S, NOSENKO A. Low-Melting Composite Glass Solders with Low Thermal Expansion[J]. Functional Materials, 2019, 26(2): 375 –380. [31] LI G, FU R, AGATHOPOULOS S, et al. Ultra-Low Thermal Expansion Coefficient of PZB/β-Eucryptite Composite Glass for MEMS Packaging[J]. Ceramics International, 2020, 46(6): 8385–8390. [32] MILLER W, SMITH C W, MACKENZIE D S, et al. Negative Thermal Expansion: A Review[J]. Journal of Materials Science, 2009, 44(20): 5441–5451. [33] ROY R, AGRAWAL D K, MCKINSTRY H A. Very Low Thermal Expansion Coefficient Materials[J]. Annual Review of Materials Science, 1989, 19(1): 59 –81. [34] LA PLACA S J, POST B. Thermal Expansion of Ice[J]. Acta Crystallographica, 1960, 13(6): 503–505. [35] SLEIGHT A W. Isotropic Negative Thermal Expansion[J]. Annual Review of Materials Science, 1998, 28(1): 29. [36] 施耐克. 新型框架结构负热膨胀化合物合成及机理研究[D]. 北京科技大学, 2021. [37] HANCOCK J C, CHAPMAN K W, HALDER G J, et al. Large Negative Thermal Expansion and Anomalous Behavior on Compression in Cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6[J]. Chemistry of Materials, 2015, 27(11): 3912–3918. [38] YUAN B H, CHEN Y G, ZHANG Q L, et al. Avoiding the Intermediate Phase Zr2WP2O12 to Develop a Larger-Negative-Thermal-Expansion-Coefficient Material Zr2W2P2O15[J]. Ceramics International, 2017, 43(9): 6831–6835. [39] JU L, ZHANG J, MA Y, et al. Fabrication and Characterization of ZrW2O8-Cf/E51 Negative Thermal Expansion Composite[J]. Materials Research Express, 2020, 7(1): 015610. [40] 周畅. 基于零膨胀 ZrW2O8/Al 复合材料设计与表征[D]. 哈尔滨工业大学, 2017. [41] MA Y, ZHANG Q, ZHAO K, et al. Tunable Negative Thermal Expansion of Ultralight ZrW2O8/Graphene Hybrid Metamaterial[J]. Carbon, 2019, 153: 32–39. [42] 吴伟萍. 钨酸锆对 CFRP 热膨胀性能的影响[D]. 哈尔滨工业大学, 2010. [43] 钟崇翠. ZrW2O8/BADCy 复合材料的制备及性能研究[D]. 西南科技大学, 2020. [44] WU H, ROGALSKI M, KESSLER M R. Zirconium Tungstate/Epoxy Nanocomposites: Effect of Nanoparticle Morphology and Negative Thermal Expansivity[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9478–9487. [45] SHI X, LIAN H, YAN X, et al. Fabrication and Properties of Polyimide Composites Filled with Zirconium Tungsten Phosphate of Negative Thermal Expansion[J]. Materials Chemistry and Physics, 2016, 179: 72–79. [46] 王姬. 固相反应法制备 ZrW2O8 的研究[D]. 哈尔滨工业大学, 2009. [47] SHI X W, ZHOU Q, YAN X, et al. Preparation and Properties of Zr2WP2O12 with Negative Thermal Expansion without Sintering Additives[J]. Processing and Application of Ceramics, 2020, 14(2): 173–180. [48] BANJURAIZAH J, MOHAMAD H, AHMAD Z A. Thermal Expansion Coefficient and Dielectric Properties of Non-Stoichiometric Cordierite Compositions with Excess MgO Mole Ratio Synthesized from Mainly Kaolin and Talc by the Glass Crystallization Method[J]. Journal of Alloys and Compounds, 2010, 494(1): 256 –260. [49] 刘献省. 可控热膨胀材料快速制备,性能改善及功能化研究[D]. 郑州大学, 2014. [50] RAMMAH Y S, EL-AGAWANY F, MAHMOUD K A, et al. FTIR, UV-Vis-NIR Spectroscopy, and Gamma Rays Shielding Competence of Novel ZnO-Doped Vanadium Borophosphate Glasses[J]. Journal of Materials Science -Materials in Electronics, 2020, 31(12): 9099–9113. [51] 闫晓升. 负膨胀材料 Zr2P2WO12 及 Zr2P2WO12/PI 复合材料的制备与性能研究[D]. 郑州大学, 2017. [52] EVANS J S O, MARY T A, VOGT T, et al. Negative Thermal Expansion in ZrW2O8and HfW2O8[J]. Chemistry of Materials, 1996, 8(12): 2809–2823. [53] EVANS J S O, MARY T A, SLEIGHT A W. Structure of Zr 2(WO4)(PO4)2 from Powder X-Ray Data: Cation Ordering with No Superstructure[J]. Journal of Solid State Chemistry, 1995, 120(1): 101–104. [54] 陈慧, 孙青, 张俭, 等. 低熔点低热膨胀系数玻璃研究进展[J]. 应用化工, 2021, 50(07): 1978–1984. [55] 常龙飞, 王伟, 茹红强. 球磨工艺对制备超细 WC 粉末的影响[J]. 材料与冶金学报, 2019, 18(03): 207-212+236. [56] 刘世权, 许淑惠, 袁怡松, 等. 玻璃粉末的烧结[J]. 玻璃与搪瓷, 1995(05): 34-38+23. [57] 常明. Bi2O3-ZnO-B2O3 低温无铅封接玻璃结构及性能研究[D]. 中国建筑材料科学研究总院, 2014. [58] JO W J, AHN H-J, KIM J H, et al. Fracture Characteristics of Frit Bonding through In-Situ Nano-Indentation Testing[J]. Journal of Materials Science & Technology, 2016, 32(11): 1204–1210. [59] FENG Y, ZHANG T. Determination of Fracture Toughness of Brittle Materials by Indentation[J]. Acta Mechanica Solida Sinica, 2015, 28(3): 221–234. [60] ROUXEL T, YOSHIDA S. The Fracture Toughness of Inorganic Glasses[J]. Journal of the American Ceramic Society, 2017, 100(10): 4374–4396. [61] STAFFIN G D, PRICE C C. Polyethers. IX. Poly-(2,6-Dimethyl-1,4-Phenylene Oxide)[J]. Journal of the American Chemical Society, 1960, 82(14): 3632–3634. [62] WANG Y, TAO Y, ZHOU J, et al. Biobased Anethole-Functionalized Poly(Phenylene Oxides): New Low Dielectric Materials with High Tg and Good Dimensional Stability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9277 –9282. [63] 储雪子, 葛爰慧. 微波双参数法测粉状材料特性[J]. 1991 年全国微波会议论文集(卷Ⅱ), 1991: 634–637. [64] HAN L, LI E, GUO G, et al. Application of Transmission/Reflection Method for Permittivity Measurement in Coal Desulfurization[J]. Progress In Electromagnetics Research Letters, 2013, 37: 177–187. [65] BOIS K J, HANDJOJO L F. Dielectric Plug-Loaded Two-Port Transmission Line Measurement Technique for Dielectric Property...[J]. IEEE Transactions on Instrumentation & Measurement, 1999, 48(6): 1141. [66] NELSON S O. Method for Determining Dielectric Properties of Solids from Measurements on Pulverized Materials[C]//1987 IEEE MTT-S International Microwave Symposium Digest. . [67] CAIJUN Z, QUANXING J, SHENHUI J. Calibration-Independent and PositionInsensitive Transmission/Reflection Method for Permittivity Measurement With One Sample in Coaxial Line[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(3): 684–689. [68] YAO H-Y, LIN Y-W, CHANG T-H. Dielectric Properties of BaTiO3–Epoxy Nanocomposites in the Microwave Regime[J]. Polymers, 2021, 13(9): 1391. [69] SIMPKIN R. Derivation of Lichtenecker’s Logarithmic Mixture Formula From Maxwell’s Equations[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(3): 545–550. [70] YU X, FANG Z, QIN Y, et al. FTIR and NMR Characterization of Thermosetting Methyl Methacrylate Terminated Poly(2,6-Dimethyl-1,4-Phenylene Oxide)—Triallyl Isocyanurate Copolymer[J]. Journal of Polymer Research, 2021, 28(7): 272.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有