(转载)二进制与三进制的妙用 您所在的位置:网站首页 三进制表示 (转载)二进制与三进制的妙用

(转载)二进制与三进制的妙用

2024-07-11 05:58| 来源: 网络整理| 查看: 265

先来思考几个问题,并不难,各位大牛应能秒杀:

 

1. 小明是个卖苹果的,小红一次在小明那买N(N  021 + 022

    假设第一次称量结果是最低位为1的小球比最低位是2的要重,那么我们可以肯定011号小球偏重或022号小球偏轻。

    那么第三次称量只需将011号或022号中任意一个与其他任意一个小球称量,若平衡则是正常小球,否则就是异常小球了。

  第二次称量时天平平衡,则我们可以肯定异常小球编号第二位必然是0 。然后你可以仿照上面的做法通过编号的最高位来找出异常小球的编号。

(2)若第一次称量时天平平衡,则异样小球编号的最低位必然是0 。同样你可以参考上面的思路通过编号的第2,3位来找到异样小球,这里就不啰嗦了。

  另有这个问题的另一种解法供参考:http://blog.sina.com.cn/s/blog_49d0731a010007i0.html。

问题5: 

  答案:1,3,9,27

  分析:

  第5个问题就是所谓“德•梅齐里亚克的砝码问题”(The Weight Problem of Bachet de Meziriac)  。

  这里涉及到所谓“平衡三进制”的问题。平衡三进制,也叫对称三进制,是一种以3为基数,各个三进制位权重为3^0,3^1,3^2…….,3^n ,以 -1,0,1为基本数码的三进制计数体系。n位三进制数表示的范围是 -((3^n) -1)/2 ~ ((3^n) -1)/2 。

  需要明白的是,一个砝码可以放在要称量的物品的同侧,也可以放在对侧,当然也可以不放。砝码的三种状态可以表示为:不放 ( 0 )、放在物品对侧( +1 )、放在物品同侧 ( -1 ) 。

  因此各个砝码碎片的重量就是各个平衡三进制数位的权重( 3^0 , 3^1 , 3^2 , 3^3 ),即 1 , 3 , 9 , 27 。

  总结一下,上面1,2题利用二进制原理解决,而3,4,5题利用三进制原理解决。总的来说原理是一样的,核心的区别在于二进制数位有2种状态,三进制数位有3种状态。 (废话!)

问题6: 

  答案:康拓三分集

  分析:

  首先用三进制数表示[0,1]间的小数,并将其画在数轴上。你会发现第一次其实是挖掉了所有小数点后第1位为1的所有数,而第二次则是挖掉了小数点后第2位为1的所有数,按此类推。

  实质上就是挖去了三进制表示法中所有含有数位1的数。因此剩余的数就是[0,1]区间上三进制表示法中不包含1的所有数的集合。这个集合就是所谓的康拓三分集。

  有趣的是:康拓三分集中元素的个数实质上是跟区间[0,1]上的实数个数是一样多的(严格的表述应该是“等势”)!

  若集合A与集合B的元素可以建立一种“一一对应”关系,则我们说A与B“等势”。例如:偶数集E跟自然数集N是等势的,因为对于偶数集中的任何一个数a,都可以在自然数集中找到一个数a/2与之相对应,反之也成立。

  下面来简单证明康拓三分集跟[0,1]区间是等势的。

  首先用二进制表示法来表示[0,1]区间中的小数。

  然后将数位中所有“1”变为“2”,这样在数位上就跟康拓三分集中的一个数完全一致了。反过来,将康拓三分集中的任一个数(二进制表示)中的全部“2”变为“1”,就唯一的对应[0,1]区间的一个二进制小数。因此,康拓三分集与 [0,1]可以建立一一对应关系,因而是等势的。

  整体= 部分。 很神奇吧?一旦到了无穷的领域就会出现很多有趣的东西,例如,你可以证明一小段线段跟一条直线上的点是等势的,完全平方数集合跟自然集是等势的,等等。

 

康拓三分集:https://www.cnblogs.com/WhyEngine/p/3998063.html



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有