电子晶体学揭示勃姆石衍生γ 您所在的位置:网站首页 β氧化铝的结构图 电子晶体学揭示勃姆石衍生γ

电子晶体学揭示勃姆石衍生γ

2024-07-09 19:14| 来源: 网络整理| 查看: 265

Structure of boehmite-derived γ-alumina and its transformation mechanism revealed by electron crystallography

γ-Alumina is a used material, while its precise crystal structure and transformation mechanism derived from boehmite have remained unclear in the literature for decades. In this work, quantitative electron microscopy has been applied to study the crystalline structure of γ-alumina and its transformation mechanism from boehmite. Based on Rietveld refinement of electron diffraction patterns, a new tetragonal structure model, with a space group of I41/amd (No. 141), was proposed for the γ-alumina phase, with Al cations on 4a, 8c, 8d and 16g sites and O anions on the 16h site, which could provide better fits than current models. During the boehmite to γ-alumina transformation induced by e-beam irradiation, when the boehmite layers were oriented along the edge-on direction, a shrinkage caused by dehydration was directly observed. Two kinds of boehmite to γ-alumina transformation mechanisms, namely collapse and reaction mechanisms, were elucidated crystallographically in detail with new insights through an intermediate structure, and the reaction mechanism was demonstrated to produce much reduced changes in dimensions and volume, compared with the collapse mechanism. The experimental observations supported the reaction mechanism, which occurred through partial occupation of the dehydrated space by diffusion in the initial stage of the transformation, without the formation of voids that only appeared after the initial stage. Filling tetrahedral interstices of the intermediate structure with Al cations in different ways yields tetragonal or cubic γ-alumina structures, and the tetragonal structure is energetically favorable because of smaller lattice distortions required, compared with the cubic structure. The crystallographic orientation relationships of γ-alumina with the parent boehmite phase deduced from the proposed mechanisms are consistent with the experimental observations.



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有