二、IAR for ARM中STM32项目创建及其启动文件分析 您所在的位置:网站首页 stm32f4启动文件区别 二、IAR for ARM中STM32项目创建及其启动文件分析

二、IAR for ARM中STM32项目创建及其启动文件分析

2023-05-05 18:46| 来源: 网络整理| 查看: 265

IAR for ARM STM32F10X官方固件库:

链接: https://pan.baidu.com/s/1U6vfGqp9IhhkvVuDXcxTtQ 提取码: 9mcx

IAR for ARM项目文件

下面是我自己写整理创建的IAR for ARM项目文件 链接: https://pan.baidu.com/s/189WZVhEDhhO98BA3I2Jfeg 提取码: m5fu

启动文件及一些重要标准库的分析 启动文件

在按照网上的教程创建IAR的STM32项目时,网上的教程都要求在项目文件中放入启动文件startup_stm32f10x_xx.s,可我在编译时发现,即使把启动文件去掉,IAR还是可以正常编译并下载Hex到芯片中并调试,所以我猜测这个启动文件应该是由IAR自动集成到Hex中的,在IAR主界面,右键左边的项目名称 -> Options... -> General Options -> Target -> Device - > 选择ST STM32F103RC,IAR大概会根据你选择的不同的Device,写入不同的启动文件汇编代码。

2019-6-6更新

最新发现,官方库的启动文件虽然不能加断点,但却包含中断服务的声明,如果没有包含官方库的启动文件,中断服务将不会启用,所以最终我还是将startup_stm32f10x_hd.s文件加入到startup目录中,这样就可以写中断服务了

接下来解析的启动文件,在固件库的【/STM32F10x_StdPeriph_Lib_V3.5.0/Libraries/CMSIS/CM3/DeviceSupport/ST/STM32F10x/startup/iar/】路径中 因为不能给启动文件加断点,以下解析都是基于自己的理解和网上相关教程的解析: 启动文件的引导地址可以自己定义,如果使用默认的配置,IAR在编译时,将会使用IAR自己的系统库作为引导

__iar_program_start 这个入口函数就是IAR内部提供的入口函数,这个函数不能加断点,似乎只能通过反汇编的形式来分析,我在IAR程序目录搜索了一边,真的有很多cstartup.s文件,IAR提供了很多系列芯片的cstartup.s文件

;******************** (C) COPYRIGHT 2011 STMicroelectronics ******************** ;* 文件名: : startup_stm32f10x_md.s ;* 作者 : MCD Application Team ;* 版本 : V3.5.0 ;* 日期 : 2011年3月11日 ;* 描述 : STM32F10x是EWARM工具链中的中等容量像量表 ;* : 这个模块执行了 ;* : - 设置初始化SP(堆栈寄存器) ;* : - 配置时钟系统 ;* : - 设置IAR程序的入口函数 ;* : - 设置异常中断服务像量表的入口地址 ;* ;* After Reset the Cortex-M3 processor is in Thread mode, ;* priority is Privileged, and the Stack is set to Main. ;******************************************************************************** ;* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS ;* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. ;* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, ;* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE ;* CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING ;* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. ;******************************************************************************* ; ; The modules in this file are included in the libraries, and may be replaced ; by any user-defined modules that define the PUBLIC symbol _program_start or ; a user defined start symbol. ; To override the cstartup defined in the library, simply add your modified ; version to the workbench project. ; ; The vector table is normally located at address 0. ; When debugging in RAM, it can be located in RAM, aligned to at least 2^6. ; The name "__vector_table" has special meaning for C-SPY: ; it is where the SP start value is found, and the NVIC vector ; table register (VTOR) is initialized to this address if != 0. ; ; Cortex-M version ; MODULE ?cstartup ; // 定义模块名称 ;; Forward declaration of sections. SECTION CSTACK:DATA:NOROOT(3) SECTION .intvec:CODE:NOROOT(2) EXTERN __iar_program_start ; // IAR程序暴露的入口地址名称 EXTERN SystemInit ; // 系统初始化时调用的地址 PUBLIC __vector_table ; // 中断向量表地址 DATA ; // 定义数据段的数据 __vector_table ; 压入中断向量表名称,以下只截取的部分内容,DCD指令是ARM指令集中的一个压栈的指令 DCD sfe(CSTACK) DCD Reset_Handler ; Reset Handler DCD NMI_Handler ; NMI Handler ............................................ 省略 .................................................... DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Default interrupt handlers. ; // 定义默认的中断函数,这里只是弱定义,可以被用户自己定义的中断向量函数覆盖 ;; THUMB ; // 进入THUMB模式(THUMB-2指令集) PUBWEAK Reset_Handler SECTION .text:CODE:REORDER(2) Reset_Handler LDR R0, =SystemInit BLX R0 LDR R0, =__iar_program_start BX R0 PUBWEAK NMI_Handler SECTION .text:CODE:REORDER(1) NMI_Handler B NMI_Handler PUBWEAK HardFault_Handler SECTION .text:CODE:REORDER(1) .................................... 省略 ....................................... USBWakeUp_IRQHandler B USBWakeUp_IRQHandler END /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

   

stm32f10x_it 【异常中断服务】

以下是固件库提供的默认异常中断函数

// NMI中断,即不可屏蔽中断,不可屏蔽中断请求信号NMI用来通知CPU,发生了“灾难性”的事件,如电源掉电、存储器读写出错、总线奇偶位出错等。NMI线上中断请求是不可屏蔽的(即无法禁止的)、而且立即被CPU锁存。因此NMI是边沿触发,不需要电平触发。 void NMI_Handler(void); // 硬件错误中断 void HardFault_Handler(void); // 内存管理异常中断 void MemManage_Handler(void); // 总线异常 void BusFault_Handler(void); // 使用中异常 void UsageFault_Handler(void); // 系统调用异常,SVC异常是必须立即得到响应的 void SVC_Handler(void); // This function handles Debug Monitor exception. 调试监视异常 void DebugMon_Handler(void); // 也是系统调用异常,但PendSV是为系统设备而设的“可悬挂请求”(pendable request),PendSV 的典型使用场合是在上下文切换时(在不同任务之间切换) void PendSV_Handler(void); // 系统定时器中断 void SysTick_Handler(void);

    

stm32f10x_rcc【复位与时钟控制器】 // 复位时钟 void RCC_DeInit(void); // 配置外部告诉时钟 void RCC_HSEConfig(uint32_t RCC_HSE); // 等待外部高速时钟启动 ErrorStatus RCC_WaitForHSEStartUp(void); // 调整内部高速时钟(HSI)到指定的值 void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue); // 启用或禁用内部高速时钟 void RCC_HSICmd(FunctionalState NewState); // 配置PLL(锁相环)的时钟源和倍频因子 void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul); // 启用或禁用PLL void RCC_PLLCmd(FunctionalState NewState); // 配置PREDIV1分频因子 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL) || defined (STM32F10X_CL) void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Source, uint32_t RCC_PREDIV1_Div); #endif // #ifdef STM32F10X_CL void RCC_PREDIV2Config(uint32_t RCC_PREDIV2_Div); void RCC_PLL2Config(uint32_t RCC_PLL2Mul); void RCC_PLL2Cmd(FunctionalState NewState); void RCC_PLL3Config(uint32_t RCC_PLL3Mul); void RCC_PLL3Cmd(FunctionalState NewState); #endif /* STM32F10X_CL */ // 配置系统时钟源 void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource); // 获取系统时钟源 uint8_t RCC_GetSYSCLKSource(void); // 配置AHB总线时钟源 void RCC_HCLKConfig(uint32_t RCC_SYSCLK); // 配置低速APB时钟源 void RCC_PCLK1Config(uint32_t RCC_HCLK); // 配置高速APB时钟源 void RCC_PCLK2Config(uint32_t RCC_HCLK); // 启用或禁用RCC中断 void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState); // 配置USB或者OTG时钟源 #ifndef STM32F10X_CL void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource); #else void RCC_OTGFSCLKConfig(uint32_t RCC_OTGFSCLKSource); #endif /* STM32F10X_CL */ // 配置ADC时钟源 void RCC_ADCCLKConfig(uint32_t RCC_PCLK2); // 配置I2S2时钟源 #ifdef STM32F10X_CL void RCC_I2S2CLKConfig(uint32_t RCC_I2S2CLKSource); void RCC_I2S3CLKConfig(uint32_t RCC_I2S3CLKSource); #endif /* STM32F10X_CL */ // 配置外部低速时钟源 void RCC_LSEConfig(uint8_t RCC_LSE); // 启用或禁用内部低速时钟 void RCC_LSICmd(FunctionalState NewState); // 配置RTC时钟源 void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource); // 启用或禁用RTC时钟 void RCC_RTCCLKCmd(FunctionalState NewState); // 获取各个片上的时钟频率 void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks); // 启用或禁用AHB外设时钟 void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState); // 启用或禁用AHB2外设时钟 void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState); // 启用或禁用APB1外设时钟 void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState); // 对外设端口进行复位 #ifdef STM32F10X_CL void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState); #endif /* STM32F10X_CL */ // 复位高速APB(APB2)外设 void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState); // 复位低速APB(APB1)外设 void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState); // 启用或禁用备份域 void RCC_BackupResetCmd(FunctionalState NewState); // 启用或禁用时钟安全系统 void RCC_ClockSecuritySystemCmd(FunctionalState NewState); // 选择MCO引脚输出的时钟源 void RCC_MCOConfig(uint8_t RCC_MCO); // 根据给定的标志位来获取一些RCC一些设置的状态 FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG); // 清除RCC标志位的状态 void RCC_ClearFlag(void); // 获取RCC中断的状态 ITStatus RCC_GetITStatus(uint8_t RCC_IT); // 清除中断挂起 void RCC_ClearITPendingBit(uint8_t RCC_IT);

    

stm32f10x_tim 【定时器】

可能是因为STM32时钟太多了,用于管理时钟的函数竟有差不多上百个

// 复位指定的通用定时器 void TIM_DeInit(TIM_TypeDef* TIMx); // 初始化指定的通用定时器,设置基础频率 void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct); // 初始化比较电平(不是很理解,以后在开发过程中理解了再补充注释) void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct); // 初始化外设定时器 void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct); // 配置PWM输出信号 void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct); // void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct); void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct); void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct); void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct); void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct); void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState); void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource); void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength); void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState); void TIM_InternalClockConfig(TIM_TypeDef* TIMx); void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource); void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource, uint16_t TIM_ICPolarity, uint16_t ICFilter); void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode); void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode); void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource); void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode, uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity); void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction); void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload); void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast); void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear); void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity); void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity); void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity); void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity); void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx); void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN); void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode); void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource); void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState); void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode); void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource); void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode); void TIM_SetCounter(TIM_TypeDef* TIMx, uint16_t Counter); void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint16_t Autoreload); void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1); void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2); void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3); void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4); void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC); void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD); uint16_t TIM_GetCapture1(TIM_TypeDef* TIMx); uint16_t TIM_GetCapture2(TIM_TypeDef* TIMx); uint16_t TIM_GetCapture3(TIM_TypeDef* TIMx); uint16_t TIM_GetCapture4(TIM_TypeDef* TIMx); uint16_t TIM_GetCounter(TIM_TypeDef* TIMx); uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx); FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG); void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG); ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT); void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT);

   

stm32f10x_usart 【串口通信】 // 复位USART void USART_DeInit(USART_TypeDef* USARTx); // 填充指定的USART到默认值 void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct); // 填充USART_InitTypeDef结构体到默认值 void USART_StructInit(USART_InitTypeDef* USART_InitStruct); // 填充指定外设的USART的USART_ClockInitTypeDef结构体到默认值 void USART_ClockInit(USART_TypeDef* USARTx, USART_ClockInitTypeDef* USART_ClockInitStruct); // 填充USART_ClockInitStruct到默认值 void USART_ClockStructInit(USART_ClockInitTypeDef* USART_ClockInitStruct); // void USART_Cmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_ITConfig(USART_TypeDef* USARTx, uint16_t USART_IT, FunctionalState NewState); void USART_DMACmd(USART_TypeDef* USARTx, uint16_t USART_DMAReq, FunctionalState NewState); void USART_SetAddress(USART_TypeDef* USARTx, uint8_t USART_Address); void USART_WakeUpConfig(USART_TypeDef* USARTx, uint16_t USART_WakeUp); void USART_ReceiverWakeUpCmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_LINBreakDetectLengthConfig(USART_TypeDef* USARTx, uint16_t USART_LINBreakDetectLength); void USART_LINCmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_SendData(USART_TypeDef* USARTx, uint16_t Data); uint16_t USART_ReceiveData(USART_TypeDef* USARTx); void USART_SendBreak(USART_TypeDef* USARTx); void USART_SetGuardTime(USART_TypeDef* USARTx, uint8_t USART_GuardTime); void USART_SetPrescaler(USART_TypeDef* USARTx, uint8_t USART_Prescaler); void USART_SmartCardCmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_SmartCardNACKCmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_HalfDuplexCmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_OverSampling8Cmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_OneBitMethodCmd(USART_TypeDef* USARTx, FunctionalState NewState); void USART_IrDAConfig(USART_TypeDef* USARTx, uint16_t USART_IrDAMode); void USART_IrDACmd(USART_TypeDef* USARTx, FunctionalState NewState); FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG); void USART_ClearFlag(USART_TypeDef* USARTx, uint16_t USART_FLAG); ITStatus USART_GetITStatus(USART_TypeDef* USARTx, uint16_t USART_IT); void USART_ClearITPendingBit(USART_TypeDef* USARTx, uint16_t USART_IT);

   

stm32f10x_gpio 【通用输入输出】 void GPIO_DeInit(GPIO_TypeDef* GPIOx); void GPIO_AFIODeInit(void); void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct); void GPIO_StructInit(GPIO_InitTypeDef* GPIO_InitStruct); uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx); uint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); uint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx); void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); void GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal); void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal); void GPIO_PinLockConfig(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); void GPIO_EventOutputConfig(uint8_t GPIO_PortSource, uint8_t GPIO_PinSource); void GPIO_EventOutputCmd(FunctionalState NewState); void GPIO_PinRemapConfig(uint32_t GPIO_Remap, FunctionalState NewState); void GPIO_EXTILineConfig(uint8_t GPIO_PortSource, uint8_t GPIO_PinSource); void GPIO_ETH_MediaInterfaceConfig(uint32_t GPIO_ETH_MediaInterface);


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有