Impact of substrates and quantum effects on exciton line shapes of 2D semiconductors at room temperature 您所在的位置:网站首页 sns官方下载 Impact of substrates and quantum effects on exciton line shapes of 2D semiconductors at room temperature

Impact of substrates and quantum effects on exciton line shapes of 2D semiconductors at room temperature

2023-06-27 20:43| 来源: 网络整理| 查看: 265

References

[1] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, 2011. https://doi.org/10.1038/nnano.2010.279.Search in Google Scholar PubMed

[2] A. Daus, S. Vaziri, V. Chen, et al.., “High-performance flexible nanoscale transistors based on transition metal dichalcogenides,” Nat. Electron., vol. 4, no. 7, pp. 495–501, 2021. https://doi.org/10.1038/s41928-021-00598-6.Search in Google Scholar

[3] Z. Yin, H. Li, H. Li, et al.., “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80, 2012. https://doi.org/10.1021/nn2024557.Search in Google Scholar PubMed

[4] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nat. Nanotechnol., vol. 8, no. 7, pp. 497–501, 2013. https://doi.org/10.1038/nnano.2013.100.Search in Google Scholar PubMed

[5] K. N. Nazif, A. Daus, J. Hong, et al.., “High-specific-power flexible transition metal dichalcogenide solar cells,” Nat. Commun., vol. 12, no. 1, pp. 1–9, 2021.10.1038/s41467-021-27195-7Search in Google Scholar PubMed PubMed Central

[6] K. N. Nazif, A. Kumar, J. Hong, et al.., “High-Performance p-n junction transition metal dichalcogenide photovoltaic cells enabled by MoOxDoping and passivation,” Nano Lett., vol. 21, no. 8, pp. 3443–3450, 2021. https://doi.org/10.1021/acs.nanolett.1c00015.Search in Google Scholar PubMed

[7] J. S. Ross, S. Wu, H. Yu, et al.., “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun., vol. 4, p. 1474, 2013. https://doi.org/10.1038/ncomms2498.Search in Google Scholar PubMed

[8] R. Frisenda, A. J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, and H. S. J. van der Zant, “Atomically thin p-n junctions based on two-dimensional materials,” Chem. Soc. Rev., vol. 47, no. 9, pp. 3339–3358, 2018. https://doi.org/10.1039/c7cs00880e.Search in Google Scholar PubMed

[9] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, “Optically active quantum dots in monolayer WSe2,” Nat. Nanotechnol., vol. 10, no. 6, pp. 491–496, 2015. https://doi.org/10.1038/nnano.2015.60.Search in Google Scholar PubMed

[10] C. Palacios-Berraquero, M. Barbone, D. M. Kara, et al.., “Atomically thin quantum light-emitting diodes,” Nat. Commun., vol. 7, pp. 1–6, 2016. https://doi.org/10.1038/ncomms12978.Search in Google Scholar PubMed PubMed Central

[11] A. Chernikov, T. C. Berkelbach, H. M. Hill, et al.., “Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2,” Phys. Rev. Lett., vol. 113, no. 7, pp. 1–5, 2014. https://doi.org/10.1103/physrevlett.113.076802.Search in Google Scholar

[12] M. M. Ugeda, A. J. Bradley, S. F. Shi, et al.., “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater., vol. 13, no. 12, pp. 1091–1095, 2014. https://doi.org/10.1038/nmat4061.Search in Google Scholar PubMed

[13] L. Cao, “Two-dimensional transition-metal dichalcogenide materials: toward an age of atomic-scale photonics,” MRS Bull., vol. 40, no. 7, pp. 592–599, 2015. https://doi.org/10.1557/mrs.2015.144.Search in Google Scholar

[14] K. F. Mak and J. Shan, “Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides,” Nat. Photonics, vol. 10, no. 4, pp. 216–226, 2016. https://doi.org/10.1038/nphoton.2015.282.Search in Google Scholar

[15] T. Mueller and E. Malic, “Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors,” npj 2D Mater. Appl., vol. 2, no. 1, p. 29, 2018. https://doi.org/10.1038/s41699-018-0074-2.Search in Google Scholar

[16] I. Epstein, B. Terrés, A. J. Chaves, et al.., “Near-unity light absorption in a monolayer WS2 van der Waals heterostructure cavity,” Nano Lett., vol. 20, no. 5, pp. 3545–3552, 2020. https://doi.org/10.1021/acs.nanolett.0c00492.Search in Google Scholar PubMed

[17] A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, “Probing the influence of dielectric environment on excitons in monolayer WSe2: insight from high magnetic fields,” Nano Lett., vol. 16, no. 11, pp. 7054–7060, 2016. https://doi.org/10.1021/acs.nanolett.6b03276.Search in Google Scholar PubMed

[18] A. V. Stier, N. Wilson, K. Velizhanin, J. Kono, X. Xu, and S. Crooker, “Magnetooptics of exciton Rydberg states in a monolayer semiconductor,” Phys. Rev. Lett., vol. 120, no. 5, p. 057405, 2018. https://doi.org/10.1103/physrevlett.120.057405.Search in Google Scholar PubMed

[19] A. K. M. Newaz, D. Prasai, J. Ziegler, et al.., “Electrical control of optical properties of monolayer MoS2,” Solid State Commun., vol. 155, pp. 49–52, 2013. https://doi.org/10.1016/j.ssc.2012.11.010.Search in Google Scholar

[20] Y. Yu, Y. Yu, L. Huang, H. Peng, L. Xiong, and L. Cao, “Giant gating tunability of optical refractive index in transition metal dichalcogenide monolayers,” Nano Lett., vol. 17, no. 6, pp. 3613–3618, 2017. https://doi.org/10.1021/acs.nanolett.7b00768.Search in Google Scholar PubMed

[21] D. Lloyd, X. Liu, J. W. Christopher, et al.., “Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2,” Nano Lett., vol. 16, no. 9, pp. 5836–5841, 2016. https://doi.org/10.1021/acs.nanolett.6b02615.Search in Google Scholar PubMed

[22] O. B. Aslan, M. Deng, and T. F. Heinz, “Strain tuning of excitons in monolayer WSe2,” Phys. Rev. B, vol. 98, no. 11, p. 115308, 2018. https://doi.org/10.1103/physrevb.98.115308.Search in Google Scholar

[23] A. Krasnok, S. Lepeshov, and A. Andrea, “Nanophotonics with 2D transition metal dichalcogenides,” Opt. Express, vol. 26, no. 12, pp. 15972–15994, 2018. https://doi.org/10.1364/oe.26.015972.Search in Google Scholar PubMed

[24] H. Zhang, B. Abhiraman, Q. Zhang, et al.., “Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings,” Nat. Commun., vol. 11, no. 1, p. 3552, 2020. https://doi.org/10.1038/s41467-020-17313-2.Search in Google Scholar PubMed PubMed Central

[25] J. S. Ross, P. Klement, A. M. Jones, et al.., “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions,” Nat. Nanotechnol., vol. 9, no. 4, pp. 268–272, 2014. https://doi.org/10.1038/nnano.2014.26.Search in Google Scholar PubMed

[26] G. Scuri, Y. Zhou, A. A. High, et al.., “Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride,” Phys. Rev. Lett., vol. 120, no. 3, p. 37402, 2018. https://doi.org/10.1103/physrevlett.120.037402.Search in Google Scholar

[27] P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Imamoğlu, “Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2,” Phys. Rev. Lett., vol. 120, no. 3, p. 037401, 2018. https://doi.org/10.1103/physrevlett.120.037401.Search in Google Scholar

[28] J. van de Groep, J. H. Song, U. Celano, Q. Li, P. G. Kik, and M. L. Brongersma, “Exciton resonance tuning of an atomically thin lens,” Nat. Photonics, vol. 14, pp. 426–430, 2020. https://doi.org/10.1038/s41566-020-0624-y.Search in Google Scholar

[29] I. Datta, S. H. Chae, G. R. Bhatt, et al.., “Low-loss composite photonic platform based on 2D semiconductor monolayers,” Nat. Photonics, vol. 14, no. 4, pp. 256–262, 2020. https://doi.org/10.1038/s41566-020-0590-4.Search in Google Scholar

[30] L. Li, J. Wang, L. Kang, et al.., “Monolithic full-Stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector,” ACS Nano, vol. 14, no. 12, pp. 16634–16642, 2020. https://doi.org/10.1021/acsnano.0c00724.Search in Google Scholar PubMed

[31] S. Biswas, M. Y. Grajower, K. Watanabe, T. Taniguchi, and H. A. Atwater, “Broadband electro-optic polarization conversion with atomically thin black phosphorus,” Science, vol. 374, no. 6566, pp. 448–453, 2021. https://doi.org/10.1126/science.abj7053.Search in Google Scholar PubMed

[32] Y. Li, A. Chernikov, X. Zhang, et al.., “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B, vol. 90, no. 20, p. 205422, 2014.10.1007/978-3-319-25376-3_5Search in Google Scholar

[33] J. W. Park, H. S. So, S. Kim, et al.., “Optical properties of large-area ultrathin MoS2 films: evolution from a single layer to multilayers,” J. Appl. Phys., vol. 116, no. 18, p. 183509, 2014. https://doi.org/10.1063/1.4901464.Search in Google Scholar

[34] H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, and M. Y. Li, “Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry,” Appl. Phys. Lett., vol. 105, no. 20, p. 201905, 2014. https://doi.org/10.1063/1.4901836.Search in Google Scholar

[35] Y. Li and T. F. Heinz, “Two-dimensional models for the optical response of thin films,” 2D Materials, vol. 5, no. 2, p. 025021, 2018. https://doi.org/10.1088/2053-1583/aab0cf.Search in Google Scholar

[36] I. Epstein, A. J. Chaves, D. A. Rhodes, et al.., “Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors,” 2D Materials, vol. 7, no. 3, p. 035031, 2020. https://doi.org/10.1088/2053-1583/ab8dd4.Search in Google Scholar

[37] Y. Lin, X. Ling, L. Yu, et al.., “Dielectric screening of excitons and trions in single-layer MoS2,” Nano Lett., vol. 14, no. 10, pp. 5569–5576, 2014. https://doi.org/10.1021/nl501988y.Search in Google Scholar PubMed

[38] A. Raja, A. Chaves, J. Yu, et al.., “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nat. Commun., vol. 8, p. 15251, 2017. https://doi.org/10.1038/ncomms15251.Search in Google Scholar PubMed PubMed Central

[39] W. Sellmeier, “Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien,” Ann. Phys., vol. 223, no. 11, pp. 386–403, 1872. https://doi.org/10.1002/andp.18722231105.Search in Google Scholar

[40] G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett., vol. 69, no. 3, pp. 371–373, 1996. https://doi.org/10.1063/1.118064.Search in Google Scholar

[41] J. A. Wilson and A. D. Yoffe, “The transition metal dichalcogenides, Discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, no. 73, pp. 193–335, 1969. https://doi.org/10.1080/00018736900101307.Search in Google Scholar

[42] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Series, Weinheim, John Wiley & Sons, 2008, pp. 1–554.Search in Google Scholar

[43] M. Selig, G. Berghäuser, A. Raja, et al.., “Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides,” Nat. Commun., vol. 7, p. 13279, 2016. https://doi.org/10.1038/ncomms13279.Search in Google Scholar PubMed PubMed Central

[44] F. Cadiz, E. Courtade, C. Robert, et al.., “Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures,” Phys. Rev. X, vol. 7, no. 2, p. 021026, 2017. https://doi.org/10.1103/physrevx.7.021026.Search in Google Scholar



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有