【学术论文】DC 您所在的位置:网站首页 pe2300功率放大器 【学术论文】DC

【学术论文】DC

2023-08-11 03:45| 来源: 网络整理| 查看: 265

整个DA电路的设计主要包括晶体管的选择、节数的选择、栅极线和漏极线的设计。

1.1 晶体管的选择和节数的选择

单个器件的栅宽的确定,主要受放大器的最高工作频率和电路的输出功率两个方面因素的限制。由于宽带放大器设计目标的最高频率达到30 GHz,且所需的输出的功率不大,因此栅宽主要先满足放大器所需达到的最高工作频率,根据:

式中gm为晶体管跨导,由此可以得到小信号增益的理论近似曲线如图2所示。

1.2 栅极线和漏极线的设计

栅极线设计主要考虑人工传输线的截止频率,特征阻抗及其电感值Lg和电容值Cg,它们之间的关系由式(8)和式(9)确定。

把人工传输线的特征阻抗定义为:

同时在Cga上并联一个电阻Rga,提高稳定性的同时提供栅极偏置电压。

漏极线设计时,为了匹配到50 Ω的系统阻抗,每个器件都无法获得最大功率和功率附加效率(Power Added Efficiency,PAE)时的最佳负载阻抗,功率和PAE将会受到限制。通过一个4节DA 的简化等效电路来解释。简化DA的4个器件均有相同的尺寸,都要求器件从漏端看出去有相同的实负载。电流从左到右依次聚集,简化原理图如图3所示。RL是每个晶体管的漏极端口看出去的阻抗。Z0d1、Z0d2、Z0d3、Z0d4分别是由端口1、2、3、4向右看的传输线的特征阻抗。根据等效传输线理论,各端口相应的传输线的特征阻抗应分别为:Z0d1=RL,Z0d2=RL/2,Z0d3=RL/3,Z0d4=RL/4,为方便输出匹配,令Z0d4=50 Ω,则再根据式:

则可以计算出各端口所需要的漏极电感值Ldk。式中Cds为晶体管漏-源电容。

2 电路的优化

通过上述步骤初步设计得到原始电路参数,采用微波仿真软件对电路进行电路拓扑结构仿真。由于晶体管参数的非线性,且考虑到对低频段的增益改善,需要通过最后的优化来达到预设的要求。为改善低频段的增益,本次设计分别在栅极和漏极的终端加入低频交流接地终端ACG1、ACG2、ACG3、ACG4。如图4(a)所示,利用ACG1、ACG2、ACG3、ACG4充分吸收出现在栅极和漏极终端的低频信号,特别是栅极低频信号,使低频段的增益平坦度得到明显改善。有无低频终端的增益仿真结果如图4(b)所示,可以看到有低频终端的曲线比无低频段的曲线有更优的增益平坦度。

最后优化后的原理图如图5所示,漏极偏置电压必须通过一个宽带低阻抗的bias tee提供350 mA的工作电流,C2为100 nF的隔直电容。ACG1、ACG3需分别连接旁路4.7 μF的电容后接地,ACG2、ACG4需要分别连接10 pF和100 nF的电容后接地。

3 仿真结果与分析

采用Keysight公司的ADS2016仿真软件对GaAs PHEMT MMIC 分布式功率放大器进行仿真。仿真结果表明:在DC-30 GHz的工作频带内,该放大器的稳定性因子k>1且|Δ|



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有