有限元仿真分析误差来源之边界条件,约束和point mass 您所在的位置:网站首页 mass是什么 有限元仿真分析误差来源之边界条件,约束和point mass

有限元仿真分析误差来源之边界条件,约束和point mass

#有限元仿真分析误差来源之边界条件,约束和point mass| 来源: 网络整理| 查看: 265

为什么会造成这种计算结果?主要是因为受拉杆件的截面是会收缩的,而Fixed support将底面的所有节点的的所有自由度都置零。这样底面就无法收缩,在底面的周围就会产生较大应力。

如果采用displacement将底面的轴向的自由度置零,看下仿真结果。

图 3应力云图

从云图上看结果和理论计算一致为35.3MPa,应力分布也是均匀的。还有一种约束形式workbench中的remote point,翻译过来可以叫远点约束,可以用remote point关联相关节点的自由度,并将该节点的六个自由度置0,计算结果如下。

图 4应力云图

可以看出和displacement约束下的计算结果相同,这个结果看似正确,但仔细推敲下,还是里面还有值得思考的问题。

笔者我以前认为remote point是将底面所有节点通过刚体单元连接到一个参考点上,但如果是这样应该和图2显示的计算结果是一样的。

我们用hyperworks来试验下。将底面的节点使用rb2也就是刚体单元,连接到一个参考点上,将该参考点的六个自由度都置0,如下所示。

图 5约束

得到底面应力云图如下所示。

图 6应力云图

底面应力分布和图2基本一致,也呈现出周围比中间高的情况。我们看看remote point的相关菜单,我们将remote point的behavior改成rigid。

图 7remote point相关菜单

计算结果如下。

图 8应力云图

计算结果和图2一致。总结下仿真计算结果,如下表所示。

表1计算结果汇总

可以看出当采用remote point耦合底面节点的自由度时,并且将 behavior设置rigid,这样就和用hyperworks的rb2单元一样,将每个节点和参考点耦合起来,用参考点自由度代替底面的自由度, 学过理论力学同学对这个描述应该不陌生,刚体运动就是这么定义的,因此将remote point的behavior设置成rigid,就会使被耦合的面变成刚体。

如果设置成deformable,参考点和被耦合面之间采用rbe3单元,这样被耦合面就是弹性体。当在remote point添加约束时,软件就会在被耦合面的节点上施加相应的反力作为约束。这样不同约束条件会造成不同计算结果, 可见当约束设置的不合理,计算结果会产生较大误差。

二、point mass

笔者在平时工作中,经常遇到这样的问题,在箱体的平板上安装着一些尺寸较小的盒体,计算模态或者应力什么的,为了减小计算的规模,经常利用质量单元来代替这些盒体。大家觉得这里应该没什么坑?但其实这里面还是有玄机的。

计算平板模态问题,问题描述如下所示。

图 9问题描述

模态计算结果如下所示。

图 10模态振型图

得到一阶固有频率为5.53Hz。

使用point mass,进行简化,计算得到结果如下。

图 11模态振型图

得到一阶固有频率为6.25Hz,和原模型相比有13%的偏差,明显是不正常的。我们来看看point mass的相关菜单。

图 12point mass相关菜单

可以看出point mass连接采用类似remote pointe的形式,behavior为deformable,这样连接单元就为rbe3,再看pinball region为all,这样设置之后,实际上是将point mass的质量平均分配到整个平面的节点上,通过hyperworks软件仿真验证下,这个假设是否成立。在每个节点上布置一个质量单元,如下图所示。

图 13质量分布图

计算结果如下所示。

图 14模态振型图

一阶固有频率为6.07Hz,和图11计算的结果6.25Hz相比,相差为2.9%,认为point mass采用如图设置之后,实际上就是讲质量平均分配到pinball region的每个节点上。因此,我们将pinball region改小,计算结果如下。

图 15模态振型图

得到一阶固有频率为5.43Hz,和图10计算结果相比只减小了1.8%,但是为什么计算结果小于原模型计算结果呢?这主要是因为behavior为deformable,point mass就不会提供任何刚度。

如果将behavior设置为rigid,计算结果如下。

图 16模态振型图

得到一阶固有频率为6.16Hz,和图10计算结果相比变大11%,这主要是因为behavior设置为rigid后,被耦合区域类似于刚体,这样整体刚度就提高了,导致计算结果偏大。

总结一下计算结果,如下表所示。

表 2计算结果汇总

因此,采用point mass简化时,behavior设置为deformable,pinball region减小到和原模型相同区域,可以得到较可信计算结果。

三、我的总结

边界条件是有限元仿真建模的关键步骤,错误的边界条件设置会导致本来要解决甲问题但计算的却是乙问题。约束和point mass是边界条件设置中经常遇到的,本文将一些相关经验总结如下:

1、Fix support将一定区域的所有节点的所有自由度置为0,这样有可能导致过约束情况产生,最终导致计算误差。

2、Displacement可以约束一定区域的所有节点的部分自由度,具体问题需要具体分析

3、Remote point可以看出当采用remote point耦合底面节点的自由度时,并且将 behavior设置rigid,这样就和用hyperworks的rb2单元一样,将每个节点自由度和参考点耦合起来,用参考点自由度代替底面的自由度,被耦合的面就会变成刚体,如果设置成deformable,参考点和被约束面之间采用rbe3单元,这样被耦合面就是弹性体。

4、Point mass和Remote point类似,将 behavior设置rigid,被耦合的面就会变成刚体,将 behavior设置deformable,被耦合面是弹性体,质量会平均分配到被耦合的节点上。

作者:青梅煮酒,仿真秀科普作者

声明:原创文章,首发仿真秀公众号(ID:fangzhenxiu2018),部分图片源自网络,如有不当请联系我们,欢迎分享,禁止私自转载,转载请联系我们。

如果您正在学习CAE ,欢迎加入我们的学习型工程师社群,与我们抱团一起学习理论、软件和行业应用。如果您也想在本公众号发布文章,欢迎向我投稿(满意稿酬和尊重署名)哦,更多详情请咨询仿真小助手(在仿真秀公众号对话框回复 小助手 , 备注 进群/投稿 即可)。返回搜狐,查看更多



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有