标准结构篇:4)EMC电磁兼容 您所在的位置:网站首页 emc规范 标准结构篇:4)EMC电磁兼容

标准结构篇:4)EMC电磁兼容

2024-07-16 05:11| 来源: 网络整理| 查看: 265

5.1 接地

接地是抑制电磁干扰、提高电子设备电磁兼容性的重要手段之一。正确的接地既能抑制干扰的影响,又能抑制设备向外辐射干扰;反之错误的接地反而会引入严重的干扰,甚至使电子设备无法正常工作。

许多电磁干扰问题是由地线产生的,因为地线电位是整个电路工作的基准电位,如果地线设计不当,地线电位就不稳,就会导致电路故障。地线设计的目的是要保证地线电位尽量稳定,从而消除干扰现象。 5.1.1 接地的概念

电子设备中的“地”通常有两种含义:一种是“大地”,另一种是“系统基准地”。接地就是指在系统的某个选定点与某个电位基准间建立低阻的导电通路。

“接大地”就是以地球的电位作为基准,并以大地作为零电位,把电子设备的金属外壳、线路选定点等通过接地线、接地极等组成的接地装置与大地相连接。

“系统基准地”是指信号回路的基准导体(电子设备通常以金属底座、机壳、屏蔽罩或粗铜线、铜带作为基准导体),并设该基准导体电位为相对零电位,

但不是大地零电位,简称为系统地。

接地的目的有两个:

一是为了安全,称为保护接地。电子设备的金属外壳必须接大地,这样可以避免因事故导致金属外壳上出现过高对地电压而危及操作人员和设备的安全。

二是为电流返回其源提供低阻抗通道,称为工作接地。

5.1.2 接地的种类

实际上,各种地线都存在电气上或是物理上的联系,不一定有明确的划分。在地系统中,有时一个地既承担保护地,又承当防雷地的作用;或既承担工作地,又承当保护地的作用。而不同功能的地连接,针对的电气对象不同,其处理方式的侧重点还会有所差异。

1)保护接地

保护接地是为了保护设备、装置、电路及人身的安全,防止雷击、静电损坏设备,或在设备故障情况下,保护人身安全。因此在设备、装置、电路的底盘及金属机壳一定要采取保护接地。

保护地保护原理是:通过把带故障电压的设备外壳短路到大地或地线端,保护过程中产生的短路电流使熔丝或空气开关断开,从而达到保护设备和人员安全的作用。

2)工作接地

工作地是单板、母板或系统之间信号的等电位参考点或参考平面,它给信号回流提供了低阻抗通道。

信号质量很大程度上依赖于工作接地质量的好坏。由于受接地材料特性和其他技术因素的影响,接地导体的连接或搭接无论做的如何好,总有一定的阻抗,信号的回流会在工作地线上产生电压降,形成地纹波,对信号质量产生影响;信号越弱,信号频率越高,这种影响就越严重。尽管如此,在设计和施工中最大限度地降低工作接地导体的阻抗仍然是非常重要的。

5.2 布板 无论设备产生电磁干扰发射还是受到外界干扰的影响,或者电路之间产生相互干扰,线路板都是问题的核心,因此设计好线路板对于保证设备的电磁兼容性具有重要的意义。 线路板设计的目的就是减小线路板上的电路产生的电磁辐射和对外界干扰的敏感性,减小线路板上电路之间的相互影响。 5.3 屏蔽 屏蔽是利用屏蔽体来阻挡或减小电磁能传输的一种技术,是抑制电磁干扰的重要手段之一。对于大部分设备的EMC设计而言,屏蔽都是必要的。 特别是随着电路工作的频率日益提高,单纯依靠线路板设计往往不能满足电磁兼容标准的要求。而且一般如果在结构设计时没有考虑电磁屏蔽的要求,很难将屏蔽效果加到产品上。所以,对于现代电子产品设计,必须从开始就考虑屏蔽的问题。

屏蔽有两个目的,一是限值内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入某一区域。

5.3.1 主要屏蔽材料和方案 电磁波经过一种材料会产生如下图3种情况:反射、吸收和透过。   所以屏蔽材料必须拥有反射或吸收的特性。 目前主流的电磁屏蔽解决方案材料有:不锈钢、铜箔、铝箔、导电涂料、电磁波吸收材料(铁氧体、镍粉、碳黑、羰基铁等)。 屏蔽是结构工程师对电子产品是一种非常实用的手段,特别是消费类电子产品,如手机,用的非常多,下面作者就举一些实例: 1)金属屏蔽罩 2)铜箔蔽  3)电磁屏蔽毡 4)电镀导电屏蔽层 5)喷涂电磁屏蔽涂料   6)镁合金外壳 镁合金是功能化与结构化相结合,既能实现电磁屏蔽功能,又能实现工程结构承重的带有“智能化”特性的屏蔽材料。但这种方法对电磁屏蔽作用存在一定的争议,暂时不要将其做主要方法。 5.3.2 屏蔽体上孔缝的影响

实际上,屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用。理想屏蔽体在30MHz以上的屏蔽效能已经足够高,远远超过工程实际的需要。真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括:缝隙、开孔、电缆穿透等。屏蔽体上面的缝隙十分常见,特别是目前机柜、插箱均是采用拼装方式,其缝隙十分多,如果处理不妥,缝隙将急剧劣化屏蔽体的屏蔽效能。

5.3.3 电缆的屏蔽设计

如果导体从屏蔽体中穿出去,将对屏蔽体的屏蔽效能产生显著的劣化作用。这种穿透比较典型的是电缆从屏蔽体中穿出。如图2-6所示。

电缆穿透的作用是将屏蔽体内外通过导线连通,等效于两个背靠背的天线,对屏蔽体的屏蔽有极大的影响。

为了避免电缆穿透对屏蔽体的影响,可以从几个方面采取措施:

1)采用屏蔽电缆时,屏蔽电缆在出屏蔽体时,采用夹线结构,保证电缆屏蔽层与屏蔽体之间可靠接地,提供足够低的接触阻抗。

2)采用屏蔽电缆时,用屏蔽连接器转接将信号接出屏蔽体,通过连接器保证电缆屏蔽层的可靠接地。

3)采用非屏蔽电缆时,采用滤波连接器转接,保证电缆与屏蔽体之间有足够低的高频阻抗。

4)采用非屏蔽电缆时,电缆在屏蔽体的内侧(或者外侧)要足够短,使干扰信号不能有效地耦合出去,从而减小了电缆穿透的影响。

5)电源线通过电源滤波器出屏蔽体,保证电源线与屏蔽体之间有足够低的高频阻抗。

5.4 滤波 对于任何设备而言,滤波都是解决电磁干扰的关键技术之一。 //不同于屏蔽,滤波的手段更需要电控工程师使用。 因为设备中的导线是效率很高的接收和辐射天线,因此,设备产生的大部分辐射发射都是通过各种导线实现的,而外界干扰往往也是首先被导线接收到,然后串入设备的。滤波的目的就是消除导线上的这些干扰信号,防止电路中的干扰信号传到导线上,借助导线辐射,也防止导线接收到的干扰信号传入电路。 5.4.1 滤波电路的基本概念

滤波电路是由电感、电容、电阻、铁氧体磁珠和共模线圈构成的频率选择性网络。为了减小电源和信号线缆对外辐射,接口电路和电源电路必须进行滤波设计。

滤波电路的效能取决于滤波电路两边的阻抗特性,在低阻抗电路中,简单的电感滤波电路可以得到40dB的衰减,而在高阻抗电路中,几乎没有作用;在高阻抗电路中,简单的电容滤波电路可以得到很好的滤波效果,在低阻抗电路中几乎不起作用。在滤波电路设计中,电容靠近高阻抗电路设计,电感靠近低阻抗电路设计。

电容器的插入损耗随频率的增加而增加,直到频率达到自谐振频率后,由于存在导线和电容器电极的电感在电路上与电容串联,于是插入损耗开始下降。

5.4.2 电源EMI滤波器

电源EMI滤波器是一种无源双向网络,它一端接电源,另一端接负载。在所关心的衰减频带的较高频段,可把电源EMI滤波器看作是“阻抗失配网络”。网络分析结果表明,滤波器阻抗两侧端口阻抗失配越大,对电磁干扰能量的衰减就越是有效。由于电源线侧的共模阻抗一般比较低,所以滤波器电源侧的阻抗一般比较高。为了得到较好的滤波效果,对低阻抗的电源侧,应配高输入阻抗的滤波器;对高输入阻抗的负载侧,则应配低输出阻抗的滤波器。

普通的电源滤波器对于数十兆以下的干扰信号有较好的滤波作用,在较高频段,由于电容的电感效应,其滤波性能将会下降。对于频率较高的干扰情况,要使用馈通式滤波器。该滤波器由于其结构特点,具有良好的滤波特性,其有效频段可以扩展到GHz,因此在无线产品中使用较多。

滤波器的使用,最重要的问题是接地问题。只有接地良好的滤波器才能发挥其滤波作用,否则是没有价值的。滤波器使用要注意以下问题:

1)滤波器放置在电源的入口位置;

2)馈通滤波器要放置在机箱(机柜)的金属壁上;

3)滤波器直接与机柜紧密连接,滤波器下面不能涂保护漆;

4)滤波器的输入输出引线不能并行,交叉。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有