YOLOv5更换损失函数OTA 您所在的位置:网站首页 dynamic函数 YOLOv5更换损失函数OTA

YOLOv5更换损失函数OTA

2023-03-31 03:55| 来源: 网络整理| 查看: 265

涨点之OTA--Optimal Transport Assignment: OTA: Optimal Transport Assignment for Object Detection

YOLOX对其进行改进后使用(simOTA),在yolov7中也有它的身影。

OTA代码:

import torch.nn.functional as F from utils.metrics import box_iou from utils.general import xywh2xyxy from utils.torch_utils import de_parallel class ComputeLossOTA: # Compute losses def __init__(self, model, autobalance=False): super(ComputeLossOTA, self).__init__() device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) det = de_parallel(model).model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7 self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance for k in 'na', 'nc', 'nl', 'anchors', 'stride': setattr(self, k, getattr(det, k)) def __call__(self, p, targets, imgs): # predictions, targets, model device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) bs, as_, gjs, gis, targets, anchors = self.build_targets(p, targets, imgs) pre_gen_gains = [torch.tensor(pp.shape, device=device)[[3, 2, 3, 2]] for pp in p] # Losses for i, pi in enumerate(p): # layer index, layer predictions b, a, gj, gi = bs[i], as_[i], gjs[i], gis[i] # image, anchor, gridy, gridx tobj = torch.zeros_like(pi[..., 0], device=device) # target obj n = b.shape[0] # number of targets if n: ps = pi[b, a, gj, gi] # prediction subset corresponding to targets # Regression grid = torch.stack([gi, gj], dim=1) pxy = ps[:, :2].sigmoid() * 2. - 0.5 #pxy = ps[:, :2].sigmoid() * 3. - 1. pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] pbox = torch.cat((pxy, pwh), 1) # predicted box selected_tbox = targets[i][:, 2:6] * pre_gen_gains[i] selected_tbox[:, :2] -= grid iou = bbox_iou(pbox, selected_tbox, CIoU=True) # iou(prediction, target) if type(iou) is tuple: lbox += (iou[1].detach() * (1 - iou[0])).mean() iou = iou[0] else: lbox += (1.0 - iou).mean() # iou loss # Objectness tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio # Classification selected_tcls = targets[i][:, 1].long() if self.nc > 1: # cls loss (only if multiple classes) t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets t[range(n), selected_tcls] = self.cp lcls += self.BCEcls(ps[:, 5:], t) # BCE # Append targets to text file # with open('targets.txt', 'a') as file: # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] obji = self.BCEobj(pi[..., 4], tobj) lobj += obji * self.balance[i] # obj loss if self.autobalance: self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() if self.autobalance: self.balance = [x / self.balance[self.ssi] for x in self.balance] lbox *= self.hyp['box'] lobj *= self.hyp['obj'] lcls *= self.hyp['cls'] bs = tobj.shape[0] # batch size loss = lbox + lobj + lcls return loss * bs, torch.cat((lbox, lobj, lcls)).detach() def build_targets(self, p, targets, imgs): indices, anch = self.find_3_positive(p, targets) device = torch.device(targets.device) matching_bs = [[] for pp in p] matching_as = [[] for pp in p] matching_gjs = [[] for pp in p] matching_gis = [[] for pp in p] matching_targets = [[] for pp in p] matching_anchs = [[] for pp in p] nl = len(p) for batch_idx in range(p[0].shape[0]): b_idx = targets[:, 0]==batch_idx this_target = targets[b_idx] if this_target.shape[0] == 0: continue txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1] txyxy = xywh2xyxy(txywh) pxyxys = [] p_cls = [] p_obj = [] from_which_layer = [] all_b = [] all_a = [] all_gj = [] all_gi = [] all_anch = [] for i, pi in enumerate(p): b, a, gj, gi = indices[i] idx = (b == batch_idx) b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx] all_b.append(b) all_a.append(a) all_gj.append(gj) all_gi.append(gi) all_anch.append(anch[i][idx]) from_which_layer.append((torch.ones(size=(len(b),)) * i).to(device)) fg_pred = pi[b, a, gj, gi] p_obj.append(fg_pred[:, 4:5]) p_cls.append(fg_pred[:, 5:]) grid = torch.stack([gi, gj], dim=1) pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8. #pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i] pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8. pxywh = torch.cat([pxy, pwh], dim=-1) pxyxy = xywh2xyxy(pxywh) pxyxys.append(pxyxy) pxyxys = torch.cat(pxyxys, dim=0) if pxyxys.shape[0] == 0: continue p_obj = torch.cat(p_obj, dim=0) p_cls = torch.cat(p_cls, dim=0) from_which_layer = torch.cat(from_which_layer, dim=0) all_b = torch.cat(all_b, dim=0) all_a = torch.cat(all_a, dim=0) all_gj = torch.cat(all_gj, dim=0) all_gi = torch.cat(all_gi, dim=0) all_anch = torch.cat(all_anch, dim=0) pair_wise_iou = box_iou(txyxy, pxyxys) pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8) top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1) dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1) gt_cls_per_image = ( F.one_hot(this_target[:, 1].to(torch.int64), self.nc) .float() .unsqueeze(1) .repeat(1, pxyxys.shape[0], 1) ) num_gt = this_target.shape[0] cls_preds_ = ( p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() * p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() ) y = cls_preds_.sqrt_() pair_wise_cls_loss = F.binary_cross_entropy_with_logits( torch.log(y/(1-y)) , gt_cls_per_image, reduction="none" ).sum(-1) del cls_preds_ cost = ( pair_wise_cls_loss + 3.0 * pair_wise_iou_loss ) matching_matrix = torch.zeros_like(cost, device=device) for gt_idx in range(num_gt): _, pos_idx = torch.topk( cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False ) matching_matrix[gt_idx][pos_idx] = 1.0 del top_k, dynamic_ks anchor_matching_gt = matching_matrix.sum(0) if (anchor_matching_gt > 1).sum() > 0: _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) matching_matrix[:, anchor_matching_gt > 1] *= 0.0 matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 fg_mask_inboxes = (matching_matrix.sum(0) > 0.0).to(device) matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) from_which_layer = from_which_layer[fg_mask_inboxes] all_b = all_b[fg_mask_inboxes] all_a = all_a[fg_mask_inboxes] all_gj = all_gj[fg_mask_inboxes] all_gi = all_gi[fg_mask_inboxes] all_anch = all_anch[fg_mask_inboxes] this_target = this_target[matched_gt_inds] for i in range(nl): layer_idx = from_which_layer == i matching_bs[i].append(all_b[layer_idx]) matching_as[i].append(all_a[layer_idx]) matching_gjs[i].append(all_gj[layer_idx]) matching_gis[i].append(all_gi[layer_idx]) matching_targets[i].append(this_target[layer_idx]) matching_anchs[i].append(all_anch[layer_idx]) for i in range(nl): if matching_targets[i] != []: matching_bs[i] = torch.cat(matching_bs[i], dim=0) matching_as[i] = torch.cat(matching_as[i], dim=0) matching_gjs[i] = torch.cat(matching_gjs[i], dim=0) matching_gis[i] = torch.cat(matching_gis[i], dim=0) matching_targets[i] = torch.cat(matching_targets[i], dim=0) matching_anchs[i] = torch.cat(matching_anchs[i], dim=0) else: matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64) return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs def find_3_positive(self, p, targets): # Build targets for compute_loss(), input targets(image,class,x,y,w,h) na, nt = self.na, targets.shape[0] # number of anchors, targets indices, anch = [], [] gain = torch.ones(7, device=targets.device).long() # normalized to gridspace gain ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices g = 0.5 # bias off = torch.tensor([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm ], device=targets.device).float() * g # offsets for i in range(self.nl): anchors = self.anchors[i] gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain # Match targets to anchors t = targets * gain if nt: # Matches r = t[:, :, 4:6] / anchors[:, None] # wh ratio j = torch.max(r, 1. / r).max(2)[0] model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) t = t[j] # filter # Offsets gxy = t[:, 2:4] # grid xy gxi = gain[[2, 3]] - gxy # inverse j, k = ((gxy % 1. 1.)).T l, m = ((gxi % 1. 1.)).T j = torch.stack((torch.ones_like(j), j, k, l, m)) t = t.repeat((5, 1, 1))[j] offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] else: t = targets[0] offsets = 0 # Define b, c = t[:, :2].long().T # image, class gxy = t[:, 2:4] # grid xy gwh = t[:, 4:6] # grid wh gij = (gxy - offsets).long() gi, gj = gij.T # grid xy indices # Append a = t[:, 6].long() # anchor indices indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices anch.append(anchors[a]) # anchors return indices, anch将上述代码复制粘贴到yolov5官方代码的utils/loss.py 中。修改train.py1.将ComputeLoss修改为ComputeLossOTA2.继续修改为ComputeLossOTA3. 在Forward中loss计算中修改添加imgs参数

3. 修改val.py

在损失计算函数中添加 im 参数

4.运行train.py进行训练

4.1 如果有类似报错:RuntimeError: shape mismatch: value tensor of shape 【2, 1】 cannot be broadcast to indexing result of shape 【2】

建议更新pytorch版本到12.1以上,或直接更新到最新版本。

4.2 更新pytorch后,运行train.py,如果还报错如:RuntimeError: DataLoader worker (pid(s) 23292) exited unexpectedly

则降低works到2 或直接设置为0。还报错就在train.py代码的开始处添加(设置临时环境变量):

import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

5. 修改成功,经过实验得知确实可以涨点(在我的数据集上),但训练时间成本会增加。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有