函数的极限运算法则(极限的运算方法) 您所在的位置:网站首页 cosx趋于0的极限存在吗 函数的极限运算法则(极限的运算方法)

函数的极限运算法则(极限的运算方法)

#函数的极限运算法则(极限的运算方法)| 来源: 网络整理| 查看: 265

本文目录极限的运算方法极限的四则运算法则是什么极限的运算法则有哪些求函数极限的方法极限的运算法则极限运用法则有哪些函数极限的求法函数极限公式汇总有哪些函数极限运算法则是什么极限的四则运算法则是什么极限的运算方法

极限的运算方法如下:

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)得a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。

2、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

3、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!

4、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

5、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

6、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

7、求左右极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。

极限的四则运算法则是什么

极限的四则运算法则是:

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。

四则运算是指加法、减法、乘法和除法四种运算。四则运算是小学数学的重要内容,也是学习其它各有关知识的基础。

在极限都存在的情况下,和差积商的极限,等于极限的和差积商。用数学的话表达就是:lim(A+B)limA+limBlim(A-B)=limA-limBlimAB=limA×limBlim(A/B)limA/limB前提是以上各个极限都存在。

极限的运算法则有哪些

极限的四则运算法则:极限的四则运算法则是在学习了极限概念和无穷小量与无穷大量之后的又一重要内容,也是学习导数和微分的重要基础知识。在进行极限的四则运算法则之前,需要对极限的概念、无穷小量和无穷大量的概念、无穷小量的运算性质、无穷小量和无穷大量的关系等基本内容都有初步学习和了解,而对于如何利用无穷小量的运算法则、无穷小量与无穷大量之间的关系求取函数的极限,以及利用观察法求取数列的极限和简单函数的极限,需要进行进一步的学习与掌握。极限的四则运算公式表公式加减法 , ,则乘法 , ,则除法 , ,且y≠0,B≠0,则极限的四则运算法则是两个函数的极限都存在,并且分母的极限还不等于0的情况下,当这两个条件都满足的,那么两个函数在和、差、积、商的极限和这两个函数的极限的和、差、积、商都相等;对于一个常数与一个函数的乘积的极限的情况,其结果等于这个常数与这个函数的极限乘积;并且一个函数的乘方的极限和这个函数的极限乘方也是相等的。在解决具体问题时,需要根据实际情况进行运算和解答,重视实际应用。当极限的函数是一个整式,可以直接运用极限的四则运算法则来进行计算。例如,当x趋近于1时,分母的极限不是0,可以直接对法则进行运用和计算。例: = =三 极限的四则运算法则在进行函数极限求解时需要注意的事项第一,对于分式来说,当其分母的极限不等于0时,才能直接运用四则运算法则进行求解。第二,避免一些常见的错误的认识,例如对c/0=∞,(c为任意的常数),∞-∞=0,∞/∞=0等。第三,对于无穷多个无穷小量来说,其和未必是无穷小量。四 极限的四则运算法则的归类1.x→x0这种情况第一,当函数f(x)是一个整式,可以对极限的四则运算法则进行直接的运用和计算,或是直接对f(x0)进行求解。第二,当函数f(x)是一个分式,其分母的极限等于0,而要注意分子的极限并不等于0,那么便可以对极限的四则运算法则进行直接的运用并计算,或者求出f(x0)。第三,在函数f(x)是个分式的情况下,当分母的极限为0时,那么分子的极限不等于0,可以先对lim =0进行求解,再根据无穷小量和无穷大量这之间的关系来进行计算。第四,当f(x)是个分式,如果其分母的极限还有分子极限都等于0,先让其分子和分母中的公因式进行约分,或者是让含有根号的分子或分母有理化,再进行约分,然后利用极限的四则运算法则来进行计算,从而得到正确的结果。2.x→∞的情形在x→∞的情形下,函数的极限值主要是由分子、分母的最高次幂项的次数之间的关系来进行决定的,需要对分子分母的最高次幂项进行分析。3.其他的情形在进行求解的过程中有时用到有关无穷小量的运算性质,对于代数和与乘积的极限而言,要注意其所强调的“有限个无穷小量”,但如果这个条件没有办法得到满足,就不能用这个性质来进行极限的求解。第五,运用极限四则运算法则求极限时常见的错误在进行数列极限的计算中,对于四则运算法则的运用,需要注意一些问题:对数列极限的加、减和乘的运算法则能够把有限个数列进行推广,在这种情况下,不能对有限个数列的情况进行适用。在这个法则里还指出,“若两个数列都有极限的存在”,这是对数列极限的四则运算法则运用的一个前提条件。在利用极限四则运算法则进行计算时,注重两点,一是法则对于每个参与运算的函数的极限都必须是存在的;二是商的极限的运算法则有个很重要的前提,分母的极限不能为0。当这两个条件中任何一个条件不能满足的时候,不能利用极限的四则运算法则进行计算。总之,极限的四则运算法则作为极限内容中的重点与难点,需要引起重视,在实际运用时,尤其要注意法则的使用条件,从而避免错误的出现。

求函数极限的方法

函数的极限求解方法如下:

1、利用函数连续性。

limf(x)=f(a)x-》a(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

2、恒等变形。

当分母等于零时,就不能将趋向值直接代入分母,可以通过几个小方法解决,因式分解,通过约分使分母不会为零。若分母出现根号,可以配一个因子使根号去除。

以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

函数极限的定义

函数极限的定义是某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”的过程中,此变量的变化,被人为规定为“永远靠近而不停止”,其有一个“不断地极为靠近A点的趋势”。

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

极限的运算法则

      极限的运算是大学高数的基础,如果不会极限的运算,会很影响之后的学习。下面就由我为大家介绍一下极限的运算法则。操作方法nbsp;     01      定理一比较好理解,两个无限趋于0的数相加仍趋近于0,用数学归纳法亦可推出:有限个无穷小之和也是无穷小。

nbsp;     02      无穷小的极限为0,任何数乘以无穷小均为0。根据定理二可推算得常数与无穷小的乘积也是无穷小,有限个无穷小的成绩也是无穷小。      03      定理三是极限内的计算,其基本计算方法与常数的计算方法一致。由此可推断出limcf(x)=climf(x)(c为常数)      04      定理四是数列极限的运算。数列是一种特殊的函数,因此定理四也成立。      05      定理五说的是极限大小的比较。其结果可由定理三推出,由limf(x)≧0,即A-B≧0,故A≧B。      06      定理六说的是复合函数的极限。其实复合函数可以看成是两个函数的乘积,故可由定理三推出定理六的结论。特别提示      其实极限的运算并不难,只要平时多算、多练,我们很掌握这六个定理。

极限运用法则有哪些

一、利用极限四则运算法则求极限

函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)

(类似的有数列极限四则运算法则)现以讨论函数为例。对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:

1.直接代入法

对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。

2.无穷大与无穷小的转换法

在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。

(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。

(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。

3.除以适当无穷大法

对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。

4.有理化法

适用于带根式的极限。

二、利用夹逼准则求极限

函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)利用夹逼准则关键在于选用合适的不等式。

三、利用单调有界准则求极限

单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。

四、利用等价无穷小代换求极限

常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。

等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。

五、利用无穷小量性质求极限

在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。

六、利用两个重要极限求极限

使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。

七、利用洛必达法则求极限

如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。

函数极限的求法

第一种:利用函数连续性:lim f(x) = f(a) x-》a

(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

第二种:恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

第三种:通过已知极限

特别是两个重要极限需要牢记。

扩展资料

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—》Xo=A,h(x)—》Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε》0,存在N(ε),使得当n》N,m》N时,都有|am-an|《ε成立。

函数极限公式汇总有哪些

极限公式:

1、e^x-1~x (x→0) 

2、 e^(x^2)-1~x^2 (x→0)

3、1-cosx~1/2x^2 (x→0)

4、1-cos(x^2)~1/2x^4 (x→0)

5、sinx~x (x→0)

6、tanx~x (x→0)

7、arcsinx~x (x→0)

8、arctanx~x (x→0)

9、1-cosx~1/2x^2 (x→0)

10、a^x-1~xlna (x→0)

11、e^x-1~x (x→0)

12、ln(1+x)~x (x→0)

13、(1+Bx)^a-1~aBx (x→0)

14、-1~1/nx (x→0)

15、loga(1+x)~x/lna(x→0)

求极限基本方法有:

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。

2、无穷大根式减去无穷大根式时,分子有理化。

3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

函数极限运算法则是什么

法则:连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。

以下是函数极限的相关介绍:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等

极限的四则运算法则是什么

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。

四则运算是指加法、减法、乘法和除法四种运算。四则运算是小学数学的重要内容,也是学习其它各有关知识的基础。

极限四则运算的前提条件是:

两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。

设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B,才能进行极限四则运算法则。

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。

数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中。

此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有