注射剂配制系统与配制系统的CIP、SIP 您所在的位置:网站首页 cip五步清洗法 注射剂配制系统与配制系统的CIP、SIP

注射剂配制系统与配制系统的CIP、SIP

2024-07-05 17:37| 来源: 网络整理| 查看: 265

 

 

4.2.1 CIP工作站。是一套固定的在线清洗装置,它是整个在线清洗系统的核心。CIP工作站采用触摸操作模式,可自动调节清洗时间、清洗剂浓度、清洗温度、清洗流速等参数,所有操作均可记录在案,便于认证。清洗剂浓度、CIP流量、CIP压力、终淋水电导率、清洗剂温度和清洗时间等均是CIP工作中需打印记录的关键数据。

4.2.2 CIP供给管网是指从CIP工作站出口到被清洗单元之间的管道、管件、阀门、转换板及其控制组件等。CIP供给管网单元的主要功能是将清洗溶液从CIP工作站输送到被清洗单元。

4.2.3 被清洗单元。是指CIP工作站的清洗目标,同一台CIP工作站的清洗目标往往不止一个,因此,如何控制CIP供给管网的流量、流速和死角是在线清洗的设计要点。对配制系统而言,被清洗单元是指制药配制工艺生产中的核心组成部分,主要包括配制罐和药液输送管网两部分。配制罐包含移动罐、发酵罐、反应罐、培养基配制罐、缓冲液配制罐、浓配罐、稀配罐和各种无菌储罐等,同时还包括工艺生产、清洗和消毒所需的罐体附件,如人孔、视镜灯、取样阀、搅拌器、喷淋器、液位传感器、温度传感器、压力传感器、安全爆破片和呼吸器等;药液输送管网包括用于药液输送和过滤的管道、管件、阀门、钛棒过滤器、微孔膜筒式过滤器和药液输送泵等。

4.2.4 CIP回流管网是指从被清洗单元到CIP工作站之间的CIP回流泵、管道、管件、阀门、转换板及其控制组件等。CIP回流管网单元的主要功能是将清洗后的回流液从被清洗单元输送到CIP工作站。根据清洗工艺的不同,输送到CIP站的回流液会被直接排放(例如预冲洗水)、循环回流(例如清洗剂)或者回收使用(例如终淋水)。一般情况下,CIP回流泵的安装位置以靠近被清洗单元为宜,根据实际需求,在某些特定工况下,也可将CIP回流泵集成在CIP工作站的分配框架中。

 

五、清洗流程

常规的清洗流程主要分为“ 三步法” 清洗和“ 五步法” 清洗两大类。

5.1 “三步法”清洗主要包含预冲洗、清洗剂清洗和终淋等3个步骤,主要适用于只需要一种清洗剂的清洗工况。

5.2 “五步法”清洗主要包含预冲洗、清洗剂清洗1、冲洗、清洗剂清洗2和终淋等5个步骤,主要适用于需要多种清洗剂的清洗工况。

每生产批次结束后,制药配制系统可进行在线清洗。清洗对象主要包括罐体(搅拌桨叶、投料管、取样阀等)及其配件的阀门、管道管件、卫生泵、过滤器套筒等。企业在选择清洗流程时,需*考虑清洗对象的理化性质。CIP系统的正确设计对制药配制系统成功与否,至关重要。

 

消毒灭菌技术(含SIP)

在药品生产环节,消毒灭菌技术是控制微生物指标基本、重要的技术。制药配制系统在清洗后,还应采取合适的微生物抑制手段并进行定期消毒或灭菌,以保证系统中微生物满足药典与生产质量指标要求。消毒(Sanitation)与灭菌(Sterilization)是两种快速降低制药配制系统微生物负荷的手段。

消毒是指用物理或化学方法杀灭或清除传播媒介上的病原微生物,使其达到无害化。通常是指杀死病原微生物的繁殖体,但不能破坏其芽孢,所以消毒是不*的,不能代替灭菌。

灭菌是指以化学剂或物理方法消灭所有活的微生物,包括所有细菌的繁殖体、芽孢、真菌及病毒,从而达到*无菌的过程。制药行业将百万分之一微生物污染率作为灭菌产品“无菌”的相对标准,它和蒸汽灭菌后产品中微生物存活的概率为10-6 (即产品的无菌保证水平为6)是同一标准的不同表示法。

 

一、灭菌的法规要求

灭菌与药典:《中国药典》2010年版在附录X Ⅶ灭菌法中规定:无菌物品是指物品中不含任何活的微生物。常用的灭菌方法有湿热灭菌法、干热灭菌法、辐射灭菌法、气体灭菌法和过滤除菌法。可根据被灭菌物品的特性采用一种或多种方法组合灭菌。只要物品允许,应尽可能选用终灭菌法灭菌;若物品不适合采用终灭菌法,可选用过滤除菌法或无菌生产工艺达到无菌保证要求;只要可能,应对不可终灭菌的物品做补充性灭菌处理(如:流通蒸汽消毒)。

在灭菌程序的验证中,尽管可通过灭菌过程某些参数的监控来评估灭菌效果,但生物指示剂的被杀灭程度是评价一个灭菌程序有效性的、直观的指标。生物指示剂是一类特殊的活微生物制品,可用于确认灭菌设备的性能、灭菌程序的验证、生产过程灭菌效果的监控等。用于灭菌验证中的生物指示剂一般是细菌的孢子。

 

二、灭菌与GMP

采用安全、可靠的清洗技术去除制药配制系统中的残留物至关重要,它是预防药品生产过程中污染和交叉污染为关键的手段之一。制药配制系统是药品生产过程中为关键的工艺系统,该系统直接接触终产品,属于直接影响系统,除必须遵循GMP的相关规定之外,制药配制系统还应符合验证的相关原则。中国GMP对设备消毒与灭菌的要求可参见《药品生产质量管理规范(2010版)》的相关条款,具体如下:

“第七十一条设备的设计、选型、安装、改造和维护必须符合预定用途,应当尽可能降低产生污染、交叉污染、混淆和差错的风险,便于操作、清洁、维护,以及必要时进行的消毒或灭菌。”

《药品生产质量管理规范(2010年版)》附录1 无菌药品规定:

“第四条无菌药品按生产工艺可分为两类:采用终灭菌工艺的为终灭菌产品;

部分或全部工序采用无菌生产工艺的为不可终灭菌产品。

第五十七条应当尽可能缩短药液从开始配制到灭菌(或除菌过滤) 的间隔时间。应当根据产品的特性及贮存条件建立相应的间隔时间控制标准。

第五十八条应当根据所用灭菌方法的效果确定灭菌前产品微生物污染水平的监控标准,并定期监控。必要时,还应当监控热原或细菌内毒素。

第五十九条无菌生产所用的包装材料、容器、设备和任何其他物品都应当灭菌,并通过双门灭菌柜进入无菌生产区,或以其他方式进入无菌生产区,但应当避免引入污染。

第六十一条无菌药品应当尽可能采用加热方式进行终灭菌,终灭菌产品中的微生物存活概率(即无菌保证水平,SAL)不得高于10-6 。采用湿热灭菌方法进行终灭菌的,通常标准灭菌时间的F0值应当大于8分钟,流通蒸汽处理不属于终灭菌。对热不稳定的产品,可采用无菌生产操作或过滤除菌的替代方法。

第六十二条可采用湿热、干热、离子辐射、环氧乙烷或过滤除菌的方式进行灭菌。每一种灭菌方式都有其特定的适用范围,灭菌工艺必须与注册批准的要求相一致,且应当经过验证。

第六十三条任何灭菌工艺在投入使用前,必须采用物理检测手段和生物指示剂,验证其对产品或物品的适用性及所有部位达到了灭菌效果。

第六十四条应当定期对灭菌工艺的有效性进行再验证(每年至少一次)。设备重大变更后,须进行再验证。应当保存再验证的记录。

第六十五条所有的待灭菌物品均须按规定的要求处理,以获得良好的灭菌效果,灭菌工艺的设计应当保证符合灭菌要求。

第六十六条应当通过验证确认灭菌设备的腔室内的待灭菌产品和物品装载方式。

第六十七条应当按照供应商的要求保存和使用生物指示剂,并通过阳性对照试验确认其质量。使用生物指示剂时,应当采取严格管理措施,防止由此所致的微生物污染。

第六十八条应当有明确区分已灭菌产品和待灭菌产品的方法。每一车(盘或其他装载设备)产品或物料均应贴签,清晰地注明品名、批号并标明是否已经灭菌。必要时,可用湿热灭菌指示带来加以区分。

第六十九条每一次灭菌操作应当有灭菌记录,并作为产品放行的依据之一。

第七十条热力灭菌通常有湿热灭菌和干热灭菌,应当符合以下要求:

( 一)在验证和生产过程中,用于监测或记录的温度探头与用于控制的温度探头应当分别设置,设置的位置应当通过验证确定。每次灭菌均应记录灭菌过程的时间- 温度曲线。采用自控和监测系统的,应当经过验证,保证符合关键工艺的要求。自控和监测系统应当能够记录系统以及工艺运行过程中出现的故障,并有操作人员监控。应当定期将独立的温度显示器的读数与灭菌过程中记录获得的图

谱进行对照。

( 二) 可使用化学或生物指示剂监控灭菌工艺,但不得替代物理测试。

( 三) 应当监测每种装载方式所需升温时间,且从所有被灭菌产品或物品达到设定的灭菌温度后开始计算灭菌时间。

( 四)应当有措施防止已灭菌产品或物品在冷却过程中被污染。除非能证明生产过程中可剔除任何渗漏的产品或物品,任何与产品或物品相接触的冷却用介质(液体或气体) 应当经过灭菌或除菌处理。

第七十一条湿热灭菌应当符合以下要求:

( 一) 湿热灭菌工艺监测的参数应当包括灭菌时间、温度或压力。腔室底部装有排水口的灭菌柜,必要时应当测定并记录该点在灭菌全过程中的温度数据。灭菌工艺中包括抽真空操作的,应当定期对腔室作检漏测试。

( 二)除已密封的产品外,被灭菌物品应当用合适的材料适当包扎,所用材料及包扎方式应当有利于空气排放、蒸汽穿透并在灭菌后能防止污染。在规定的温度和时间内,被灭菌物品所有部位均应与灭菌介质充分接触。

第七十二条干热灭菌符合以下要求:

( 一) 干热灭菌时,灭菌柜腔室内的空气应当循环并保持正压, 阻止非无菌空气进入。进入腔室的空气应当经过高效过滤器过滤,高效过滤器应当经过完整性测试。 

( 二)干热灭菌用于去除热原时,验证应当包括细菌内毒素挑战试验。

( 三)干热灭菌过程中的温度、时间和腔室的内外压差应当有记录。

第七十三条 辐射灭菌应当符合以下要求:

( 一) 经证明对产品质量没有不利影响的,方可采用辐射灭菌。辐射灭菌应当符合《中华人民共和国药典》和注册批准的相关要求。

( 二)辐射灭菌工艺应当经过验证。验证方案应当包括辐射剂量、辐射时间、包装材质、装载方式,并考察包装密度变化对灭菌效果的影响。

( 三)辐射灭菌过程中,应当采用剂量指示剂测定辐射剂量。

( 四)生物指示剂可作为一种附加的监控手段。

( 五)应当有措施防止已辐射物品与未辐射物品的混淆。在每个包装上均应有辐射后能产生颜色变化的辐射指示片。

( 六)应当在规定的时间内达到总辐射剂量标准。

( 七)辐射灭菌应当有记录。

第七十四条环氧乙烷灭菌应当符合以下要求:

( 一)环氧乙烷灭菌应当符合《中华人民共和国药典》和注册批准的相关要求。

( 二)灭菌工艺验证应当能够证明环氧乙烷对产品不会造成破坏性影响,而且针对不同产品或物料所设定的排气条件和时间,能够保证所有残留气体及反应产物降至设定的合格限度。

( 三)应当采取措施避免微生物被包藏在晶体或干燥的蛋白质内,保证灭菌气体与微生物直接接触。应当确认被灭菌物品的包装材料的性质和数量对灭菌效果的影响。

( 四)被灭菌物品达到灭菌工艺所规定的温、湿度条件后,应当尽快通入灭菌气体,保证灭菌效果。

( 五)每次灭菌时,应当将适当的、一定数量的生物指示剂放置在被灭菌物品的不同部位,监测灭菌效果,监测结果应当纳入相应的批记录。

( 六)每次灭菌记录的内容应当包括完成整个灭菌过程的时间、灭菌过程中腔室的压力、温度和湿度、环氧乙烷的浓度及总消耗量。应当记录整个灭菌过程的压力和温度,灭菌曲线应当纳入相应的批记录。

( 七)灭菌后的物品应当存放在受控的通风环境中,以便将残留的气体及反应产物降至规定的限度内。

第七十五条不可终灭菌产品的过滤除菌应当符合以下要求:

(一)可终灭菌的产品不得以过滤除菌工艺替代终灭菌工艺。如果药品不能在其终包装容器中灭菌,可用0.22µm(更小或相同过滤效力)的除菌过滤器将药液滤入预先灭菌的容器内。由于除菌过滤器不能将病毒或支原体全部滤除,可采用热处理方法来弥补除菌过滤的不足。

( 二)应当采取措施降低过滤除菌的风险。宜安装第二只已灭菌的除菌过滤器再次过滤药液,终的除菌过滤滤器应当尽可能接近灌装点。

( 三)除菌过滤器使用后,必须采用适当的方法立即对其完整性进行检查并记录。常用的方法有起泡点试验、扩散流试验或压力保持试验。

( 四)过滤除菌工艺应当经过验证,验证中应当确定过滤一定量药液所需时间及过滤器二侧的压力。任何明显偏离正常时间或压力的情况应当有记录并进行调查,调查结果应当归入批记录。

( 五)同一规格和型号的除菌过滤器使用时限应当经过验证,一般不得超过一个工作日。

 

三、灭菌的基本原理

制药配制系统的微生物污染分为外源性微生物污染和内源性微生物污染。

原辅料与制药用水是制药配制系统中主要的外源性微生物污染源。原辅料与制药用水的质量至少必须符合《中国药典》的有关质量标准,其他潜在的外源性微生物污染有:配制管道系统形成负压并倒吸脏空气,罐体呼吸器滤膜破损,在污染的排水口处形成倒吸等。对制药配制系统的设计和维修保养应予足够重视,以大限度地减少外源性微生物污染。

单元操作可能是内源性微生物污染的主要根源。原辅料与制药用水中的微生物可吸着在罐体内壁、管道内壁以及滤膜等其他单元的运行表面,诱发生成生物膜。有些微生物为在低营养环境下生存,以生物膜作为适应性反应。常规灭菌方法对已形成的生物膜没有作用。当生物膜中的微生物脱落下来并进入制药配制系统的其他区域,在下流可发生菌落。微生物也可依附在微孔过滤膜上,它是随后的过滤灭菌工艺的主要污染源。无菌制药配制系统是内源性微生物污染的另一根源,微生物可在管道壁、阀门以及其他区域形成菌落,并增殖形成生物膜。这样,生物膜就成为了不断的微生物污染源。

通常制药配制系统中的微生物多为革兰阴性菌和嗜热菌。内毒素为它们释放出来的代谢物,故控制制药配制系统中的微生物负荷有助于控制产品的细菌内毒素指标。生物膜是微生物相互黏结并附着在管道表面形成的黏性物质,它是复杂和多样化的活微生物和死微生物的聚集体,包括多糖-蛋白质复合物、吸附的有机物以及夹带的颗粒。生物膜的形成是长期微生物污染繁殖的结果,一旦形成,很难用常规加热、机械或者化学处理方法去除。

掌握制药配制系统中细菌生长规律,有助于我们合理确认制药配制系统的消毒或灭菌周期。可结合统计学的方法,对每套制药配制系统进行有针对性的科学分析并把握其变化规律,为实现“质量的过程控制”提供科学依据,我们可通过风险评估手段,结合系统的微生物水平合理确认消毒或灭菌周期。例如,在生物制药、血液制品等不可终灭菌的无菌产品生产中,产品的无菌保证取决于整个生产过程,无菌配制系统的微生物负荷控制非常关键,为保证有良好的微生物控制,每批药品生产后,均会实现及时清洗与灭菌; 

 

四、死角的影响

死角检查是系统进行安装确认时的一项重要内容。在制药配制系统中,死角为微生物繁殖提供了“温床”,引起微生物或内毒素指标超标,导致终成品不符合质量要求;死角会导致系统消毒或灭菌不*引发的二次微生物污染。在制药配制系统中,任何死角的存在均可能导致整个系统的污染。因此,中国GMP2010年版要求“管道的设计和安装应避免死角、盲管”。

死角的消毒验证表明,小于3D死角的支路很快能达到预定的消毒温度,支路垂直向下或向上的大于3D死角,在流速为0.4m/s和1.2m/s时,支路处始终无法达到预定的消毒温度,当流速提高到2.0m/s时,除垂直向下的L/D等于4.0的支路能达到消毒温度外,其他支路处始终无法达到预定的消毒温度。上述实验说明:死角是影响支路清洗的主要关键因素,而流速是影响支路清洗的次要关键因素。

虽然GMP法规并未对死角标准做一个大值的硬性规定,但基于上述研究结论,死角的“3D”规则还是得到了制药行业的普遍认同和推广。例如,中国GMP、欧盟GMP和美国FDA c GMP的大多数企业均以“3D”规则(L



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有