新型奥氏体耐热钢CHDG 您所在的位置:网站首页 avrami方程怎么计算 新型奥氏体耐热钢CHDG

新型奥氏体耐热钢CHDG

2024-06-08 09:07| 来源: 网络整理| 查看: 265

The deformation behavior and microstructural evolution of a new developed austenitic heat resistant steel CHDG-A were investigated by hot compression tests with strain rate in the range of 0.01-10 s-1 at 900~1100℃. The results show that either increasing the deformation temperature or decreasing the strain rate, the flow stress level reduces remarkably. Accurate constitutive equations were established between peak stress and deformation parameters, i.e., temperature and strain rate by the regression analysis of sine hyperbolic function. The hot deformation activation energy of CHDG-A was calculated to be 515.618 kJ/mol. From the deformed microstructures it is found that dynamic recrystallization (DRX) is the principal softening mechanism during hot working. The DRX process may initiate from nucleus formed at bulging out of grain-boundaries, which can be promoted by the increase of temperature and the decrease of strain rate. The values of peak stress, critical stress, peak strain and critical strain for DRX were determined from the true strain-true stress curves and their equations related to the Zener-Hollomon parameter were obtained. The critical strain and corresponding stress for DRX can be expressed through the parameter Z. The critical ratios of εc/εp and σc/σp are also identified, which are 0.52 and 0.98, respectively. Moreover, the DRX kinetics for CHDG-A can be represented in the form of Avrami equation, and the predicted volume fraction of new grains based on the developed model agrees well with the experimental results.

Keywords: metallic materials ; austenitic heat resistant steel ; hot compression ; Zener-Hollomon parameter ; dynamic recrystallization



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有