[C语言嵌入式系统编程修炼] 屏幕操作与键盘操作篇 您所在的位置:网站首页 C语言屏幕输入的几种方式 [C语言嵌入式系统编程修炼] 屏幕操作与键盘操作篇

[C语言嵌入式系统编程修炼] 屏幕操作与键盘操作篇

2024-07-12 07:03| 来源: 网络整理| 查看: 265

第3章 屏幕操作 3.1 汉字处理

现在要解决的问题是,嵌入式系统中经常要使用的并非是完整的汉字库,往往只是需要提供数量有限的汉字供必要的显示功能。例如,一个微波炉的 LCD 上没有必要提供显示 "电子邮件" 的功能;一个提供汉字显示功能的空调的 LCD 上不需要显示一条"短消息",诸如此类。但是一部手机、小灵通则通常需要包括较完整的汉字库。

如果包括的汉字库较完整,那么,由内码计算出汉字字模在库中的偏移是十分简单的:汉字库是按照区位的顺序排列的,前一个字节为该汉字的区号,后一个字节为该字的位号。每一个区记录 94 个汉字,位号则为该字在该区中的位置。因此,汉字在汉字库中的具体位置计算公式为:94*(区号-1)+位号-1。减 1 是因为数组是以 0 为开始而区号位号是以 1 为开始的。只需乘上一个汉字字模占用的字节数即可,即:(94\*(区号-1)+位号-1)*一个汉字字模占用字节数,以 16*16 点阵字库为例,计算公式则为:(94*(区号-1)+(位号-1))*32。汉字库中从该位置起的 32 字节信息记录了该字的字模信息。

对于包含较完整汉字库的系统而言,我们可以以上述规则计算字模的位置。但是如果仅仅是提供少量汉字呢?譬如几十至几百个?最好的做法是定义宏:

#define EX_FONT_CHAR() #define EX_FONT_UNICODE_VAL() (), #define EX_FONT_ANSI_VAL() (),

定义结构体:

typedef struct _wide_unicode_font16x16 {  WORD ; /* 内码 */  BYTE data[32]; /* 字模点阵 */ }Unicode; #define CHINESE_CHAR_NUM … /* 汉字数量 */

字模的存储用数组:

Unicode chinese[CHINESE_CHAR_NUM] = { { EX_FONT_CHAR("业") EX_FONT_UNICODE_VAL(0x4e1a) {0x04, 0x40, 0x04, 0x40, 0x04, 0x40, 0x04, 0x44, 0x44, 0x46, 0x24, 0x4c, 0x24, 0x48, 0x14, 0x50, 0x1c, 0x50, 0x14, 0x60, 0x04, 0x40, 0x04, 0x40, 0x04, 0x44, 0xff, 0xfe, 0x00, 0x00, 0x00, 0x00} }, { EX_FONT_CHAR("中") EX_FONT_UNICODE_VAL(0x4e2d) {0x01, 0x00, 0x01, 0x00, 0x21, 0x08, 0x3f, 0xfc, 0x21, 0x08, 0x21, 0x08, 0x21, 0x08, 0x21, 0x08, 0x21, 0x08, 0x3f, 0xf8, 0x21, 0x08, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00} }, }

要显示特定汉字的时候,只需要从数组中查找内码与要求汉字内码相同的即可获得字模。如果前面的汉字在数组中以内码大小顺序排列,那么可以以二分查找法更高效的查找到汉字的字模。这是一种很有效的组织小汉字库的方法,它可以保证程序有很好的结构。

3.2 系统时间显示

从 NVRAM 中可以读取系统的时间,系统一般借助 NVRAM 产生的秒中断每秒读取一次当前时间并在 LCD 上显示。关于时间的显示,有一个效率问题。因为时间有其特殊性,那就是 60 秒才有一次分钟的变化,60 分钟才有一次小时变化,如果我们每次都将读取的时间在屏幕上完全重新刷新一次,则浪费了大量的系统时间。

一个较好的办法是我们在时间显示函数中以静态变量分别存储小时、分钟、秒,只有在其内容发生变化的时候才更新其显示。

extern void DisplayTime(…) {  static BYTE byHour,byMinute,bySecond;  BYTE byNewHour, byNewMinute, byNewSecond;  byNewHour = GetSysHour();  byNewMinute = GetSysMinute();  byNewSecond = GetSysSecond();    if(byNewHour != byHour)  {   … /* 显示小时 */   byHour = byNewHour;  }  if(byNewMinute != byMinute)  {   … /* 显示分钟 */   byMinute = byNewMinute;  }  if(byNewSecond != bySecond)  {   … /* 显示秒钟 */   bySecond = byNewSecond;  } } 3.3 动画显示

动画是无所谓有,无所谓无的,静止的画面走的路多了,也就成了动画。随着时间的变更,在屏幕上显示不同的静止画面,即是动画之本质。所以,在一个嵌入式系统的 LCD 上欲显示动画,必须借助定时器。没有硬件或软件定时器的世界是无法想像的:

(1)没有定时器,一个操作系统将无法进行时间片的轮转,于是无法进行多任务的调度,于是便不再成其为一个多任务操作系统;

(2)没有定时器,一个多媒体播放软件将无法运作,因为它不知道何时应该切换到下一帧画面;

(3)没有定时器,一个网络协议将无法运转,因为其无法获知何时包传输超时并重传之,无法在特定的时间完成特定的任务。

因此,没有定时器将意味着没有操作系统、没有网络、没有多媒体,这将是怎样的黑暗?所以,合理并灵活地使用各种定时器,是对一个软件人的最基本需求!

在 80186 为主芯片的嵌入式系统中,我们需要借助硬件定时器的中断来作为软件定时器,在中断发生后变更画面的显示内容。在时间显示 "xx:xx" 中让冒号交替有无,每次秒中断发生后,需调用 ShowDot:

void showDot() { static bool bShowDot = TRUE; // static变量,避免值被重新初始化 if(bShowDot) showChar(":",xPos,yPos); else showChar(" ",xPos,yPos); bShowDot = !bShowDot ; // 使用!操作符,来改变 bShowDot 的值,从而达到闪烁效果 }

以前的类似闪烁程序是这样写的,并不是太好:

int i; void showDot() { i++; if(i%2) showChar(":",xPos,yPos); else showChar(" ",xPos,yPos); } 3.4 菜单操作

无数人为之绞尽脑汁的问题终于出现了,在这一节里,我们将看到,在 C 语言中哪怕用到一丁点的面向对象思想,软件结构将会有何等的改观!

笔者曾经是个笨蛋,被菜单搞晕了,给出这样的一个系统:

要求以键盘上的 "← →" 键切换菜单焦点,当用户在焦点处于某菜单时,若敲击键盘上的 OK、CANCEL 键则调用该焦点菜单对应之处理函数。我曾经傻傻地这样做着:

/* 按下OK键 */ void onOkKey() {  /* 判断在什么焦点菜单上按下Ok键,调用相应处理函数 */  Switch(currentFocus)  {   case MENU1:    menu1OnOk();    break;   case MENU2:    menu2OnOk();    break;   …  } } /* 按下Cancel键 */ void onCancelKey() {  /* 判断在什么焦点菜单上按下Cancel键,调用相应处理函数 */  Switch(currentFocus)  {   case MENU1:    menu1OnCancel();    break;   case MENU2:    menu2OnCancel();    break;   …  } } 终于有一天,我这样做了: /* 将菜单的属性和操作"封装"在一起 */ typedef struct tagSysMenu {  char *text; /* 菜单的文本 */  BYTE xPos; /* 菜单在LCD上的x坐标 */  BYTE yPos; /* 菜单在LCD上的y坐标 */  void (*onOkFun)(); /* 在该菜单上按下ok键的处理函数指针 */  void (*onCancelFun)(); /* 在该菜单上按下cancel键的处理函数指针 */ }SysMenu, *LPSysMenu; 当我定义菜单时,只需要这样: static SysMenu menu[MENU_NUM] = {  {   "menu1", 0, 48, menu1OnOk, menu1OnCancel //menu1OnOk, menu1OnCancel 为在其他地方已经定义好的函数  }  ,  {   " menu2", 7, 48, menu2OnOk, menu2OnCancel  }  ,  {   " menu3", 15, 48, menu3OnOk, menu3OnCancel  }  ,  {   " menu4", 23, 48, menu4OnOk, menu4OnCancel  }  … }; OK键和CANCEL键的处理变成: /* 按下OK键 */ void onOkKey() {  menu[currentFocusMenu].onOkFun(); } /* 按下Cancel键 */ void onCancelKey() {  menu[currentFocusMenu].onCancelFun(); }

程序被大大简化了,也开始具有很好的可扩展性!我们仅仅利用了面向对象中的封装思想,就让程序结构清晰,其结果是几乎可以在无需修改程序的情况下在系统中添加更多的菜单,而系统的按键处理函数保持不变。

3.5 模拟MessageBox函数

MessageBox 函数,这个 Windows 编程中的超级猛料,不知道是多少入门者第一次用到的函数。还记得我们第一次在 Windows 中利用 MessageBox 输出 "Hello,World!" 对话框时新奇的感觉吗?无法统计,这个世界上究竟有多少程序员学习 Windows 编程是从MessageBox("Hello,World!",…)开始的。广泛流传着一个词汇,叫做 "’Hello,World’ 级程序员",意指入门级程序员,但似乎 "’Hello,World’级" 这个说法更搞笑而形象。

图 2 给出了两种永恒经典的 Hello,World 对话框,一种只具有 "确定",一种则包含 "确定"、"取消"。是的, MessageBox 的确有,而且也应该有两类!这完全是由特定的应用需求决定的。

嵌入式系统中没有给我们提供 MessageBox,但是鉴于其功能强大,我们需要模拟之,一个模拟的 MessageBox 函数为:

/****************************************** /* 函数名称: MessageBox /* 功能说明: 弹出式对话框,显示提醒用户的信息 /* 参数说明: lpStr --- 提醒用户的字符串输出信息 /* TYPE --- 输出格式(ID_OK = 0, ID_OKCANCEL = 1) /* 返回值: 返回对话框接收的键值,只有两种 KEY_OK, KEY_CANCEL /****************************************** typedef enum TYPE { ID_OK,ID_OKCANCEL }MSG_TYPE; extern BYTE MessageBox(LPBYTE lpStr, BYTE TYPE) {  BYTE key = -1;  ClearScreen(); /* 清除屏幕 */  DisplayString(xPos,yPos,lpStr,TRUE); /* 显示字符串 */    /* 根据对话框类型决定是否显示确定、取消 */  switch (TYPE)  {   case ID_OK:    DisplayString(13,yPos+High+1, " 确定 ", 0);    break;   case ID_OKCANCEL:    DisplayString(8, yPos+High+1, " 确定 ", 0);    DisplayString(17,yPos+High+1, " 取消 ", 0);    break;   default:    break;  }    DrawRect(0, 0, 239, yPos+High+16+4); /* 绘制外框 */    /* MessageBox是模式对话框,阻塞运行,等待按键 */  while( (key != KEY_OK) || (key != KEY_CANCEL) )  {   key = getSysKey();  }    /* 返回按键类型 */  if(key== KEY_OK)  {   return ID_OK;  }  else  {   return ID_CANCEL;  } }

上述函数与我们平素在 VC++ 等中使用的 MessageBox 是何等的神似啊?实现这个函数,你会看到它在嵌入式系统中的妙用是无穷的。

3.6 总结

本篇是本系列文章中技巧性最深的一篇,它提供了嵌入式系统屏幕显示方面一些很巧妙的处理方法,灵活使用它们,我们将不再被 LCD 上凌乱不堪的显示内容所困扰。

屏幕乃嵌入式系统生存之重要辅助,面目可憎之显示将另用户逃之夭夭。屏幕编程若处理不好,将是软件中最不系统、最混乱的部分,笔者曾深受其害。

第四章 键盘操作 4.1 处理功能键

功能键的问题在于,用户界面并非固定的,用户功能键的选择将使屏幕画面处于不同的显示状态下。例如主画面如下图所示:

当用户在设置 XX 上按下 Enter 键之后,画面就切换到了设置 XX 的界面,如下图所示: ![](https://img2018.cnblogs.com/blog/1075214/201811/1075214-20181125182020469-1802322986.png) 程序如何判断用户处于哪一画面,并在该画面的程序状态下调用对应的功能键处理函数,而且保证良好的结构,是一个值得思考的问题。

让我们来看看 WIN32 编程中用到的"窗口"概念,当消息(message)被发送给不同窗口的时候,该窗口的消息处理函数(是一个 callback 函数)最终被调用,而在该窗口的消息处理函数中,又根据消息的类型调用了该窗口中的对应处理函数。通过这种方式,WIN32 有效的组织了不同的窗口,并处理不同窗口情况下的消息。

我们从中学习到的就是:

(1)将不同的画面类比为 WIN32 中不同的窗口,将窗口中的各种元素(菜单、按钮等)包含在窗口之中;

(2)给各个画面提供一个功能键"消息"处理函数,该函数接收按键信息为参数;

(3)在各画面的功能键 "消息" 处理函数中,判断按键类型和当前焦点元素,并调用对应元素的按键处理函数。

/* 将窗口元素、消息处理函数封装在窗口中 */ struct windows {  BYTE currentFocus;  ELEMENT element[ELEMENT_NUM];  void (*messageFun) (BYTE key);  … }; /* 消息处理函数 */ void message(BYTE key) {  BYTE i = 0;  /* 获得焦点元素 */  while ( (element[i].ID!= currentFocus)&& (i < ELEMENT_NUM) )  {   i++;  }  /* "消息映射" */  if(i < ELEMENT_NUM)  {   switch(key)   {    case OK:     element[i].OnOk();    break;    …   }  } }

在窗口的消息处理函数中调用相应元素按键函数的过程类似于 "消息映射",这是我们从 WIN32 编程中学习到的。编程到了一个境界,很多东西都是相通的了。其它地方的思想可以拿过来为我所用,是为编程中的"拿来主义"。

在这个例子中,如果我们还想玩得更大一点,我们可以借鉴 MFC 中处理 MESSAGE_MAP 的方法,我们也可以学习 MFC 定义几个精妙的宏来实现"消息映射"。

4.2 处理数字键

用户输入数字时是一位一位输入的,每一位的输入都对应着屏幕上的一个显示位置(x 坐标,y 坐标)。此外,程序还需要记录该位置输入的值,所以有效组织用户数字输入的最佳方式是定义一个结构体,将坐标和数值捆绑在一起:

/* 用户数字输入结构体 */ typedef struct tagInputNum {  BYTE byNum; /* 接收用户输入赋值 */  BYTE xPos; /* 数字输入在屏幕上的显示位置x坐标 */  BYTE yPos; /* 数字输入在屏幕上的显示位置y坐标 */ }InputNum, *LPInputNum;

那么接收用户输入就可以定义一个结构体数组,用数组中的各位组成一个完整的数字:

InputNum inputElement[NUM_LENGTH]; /* 接收用户数字输入的数组 */ /* 数字按键处理函数 */ extern void onNumKey(BYTE num) { if(num==0|| num==1) /* 只接收二进制输入 */ {   /* 在屏幕上显示用户输入 */   DrawText(inputElement[currentElementInputPlace].xPos, inputElement[currentElementInputPlace].yPos, "%1d", num);   /* 将输入赋值给数组元素 */   inputElement[currentElementInputPlace].byNum = num;   /* 焦点及光标右移 */   moveToRight(); } }

将数字每一位输入的坐标和输入值捆绑后,在数字键处理函数中就可以较有结构的组织程序,使程序显得很紧凑。

4.3 整理用户输入

继续第 2 节的例子,在第 2 节的 onNumKey 函数中,只是获取了数字的每一位,因而我们需要将其转化为有效数据,譬如要转化为有效的 XXX 数据,其方法是:

/* 从2进制数据位转化为有效数据:XXX */ void convertToXXX() {  BYTE i;  XXX = 0;  for (i = 0; i < NUM_LENGTH; i++)  {   XXX += inputElement.byNum*power(2, NUM_LENGTH - i - 1);  } }

反之,我们也可能需要在屏幕上显示那些有效的数据位,因为我们也需要能够反向转化:

/* 从有效数据转化为2进制数据位:XXX */ void convertFromXXX() {  BYTE i;  XXX = 0;  for (i = 0; i < NUM_LENGTH; i++)  {   inputElement.byNum = XXX / power(2, NUM_LENGTH - i - 1) % 2;  } }

当然在上面的例子中,因为数据是 2 进制的,用 power 函数不是很好的选择,直接用 ">" 移位操作效率更高,我们仅是为了说明问题的方便。试想,如果用户输入是十进制的,power 函数或许是唯一的选择了。

4.4 总结

本篇给出了键盘操作所涉及的各个方面:功能键处理、数字键处理及用户输入整理,基本上提供了一个全套的按键处理方案。对于功能键处理方法,将 LCD 屏幕与 Windows 窗口进行类比,提出了较新颖地解决屏幕、键盘繁杂交互问题的方案。

计算机学的许多知识都具有相通性,因而,不断追赶时髦技术而忽略基本功的做法是徒劳无意的。我们最多需要"精通"三种语言(精通,一个在如今的求职简历里泛滥成灾的词语),最佳拍档是汇编、C、C++(或JAVA),很显然,如果你"精通"了这三种语言,其它语言你应该是可以很快"熟悉"的,否则你就没有"精通"它们。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有