基于折纸的3D无支撑空心结构的4D打印设计 您所在的位置:网站首页 3d打印晶格结构建模 基于折纸的3D无支撑空心结构的4D打印设计

基于折纸的3D无支撑空心结构的4D打印设计

2024-07-03 06:51| 来源: 网络整理| 查看: 265

[ 1 ] Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 2018;143:172‒96. 链接1

[ 2 ] Plocher J, Panesar A. Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des 2019;183:108164. 链接1

[ 3 ] Lebaal N, Zhang Y, Demoly F, Roth S, Gomes S, Bernard A. Optimised lattice structure configuration for additive manufacturing. CIRP Ann 2019;‍68(1):117‒20. 链接1

[ 4 ] Horn TJ, Harrysson OLA. Overview of current additive manufacturing technologies and selected applications. Sci Prog 2012;95(3):255‒82. 链接1

[ 5 ] Peraza-Hernandez EA, Hartl DJ, Malak Jr RJ, Lagoudas DC. Origami-inspired active structures: a synthesis and review. Smart Mater Struct 2014;23(9):094001. 链接1

[ 6 ] Hof LA, Wüthrich R. Industry 4.0—towards fabrication of mass-personalized parts on glass by spark assisted chemical engraving (SACE). Manuf Lett 2018;15:76‒80. 链接1

[ 7 ] Wang P, Chu W, Li W, Tan Y, Liu F, Wang M, et al. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution. Micromachines 2019;10(9):565. 链接1

[ 8 ] Introduction to the QuickCast Patterns [Internet]. Rock Hill: 3D Systems, Inc.; [cited 2021 Dec 20]. Available from: http://infocenter.3dsystems.com/bestpractices/sla-best-practices/quickcast-pattern-design-guide/introduction-quickcast-patterns. 链接1

[ 9 ] Vanek J, Galicia JAG, Benes B. Clever support: efficient support structure generation for digital fabrication. Comput Graph Forum 2014;33(5):117‒25. 链接1

[10] Germain L, Fuentes CA, van Vuure AW, des Rieux A, Dupont-Gillain C. 3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Mater Des 2018;151:113‒22. 链接1

[11] An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering 2015;1(2):261‒8. 链接1

[12] Zhang N, Zhang LC, Chen Y, Shi YS. Local barycenter based efficient tree-support generation for 3D printing. Comput Aided Des 2019;115:277‒92. 链接1

[13] Lu L, Sharf A, Zhao H, Wei Y, Fan Q, Chen X, et al. Build-to-last: strength to weight 3D printed objects. ACM Trans Graph 2014;33(4):97. 链接1

[14] Wang W, Wang TY, Yang Z, Liu L, Tong X, Tong W, et al. Cost-effective printing of 3D objects with skin-frame structures. ACM Trans Graph 2013;32(6):177. 链接1

[15] Zhang X, Xia Y, Wang J, Yang Z, Tu C, Wang W. Medial axis tree—an internal supporting structure for 3D printing. Comput Aided Geom Des 2015;‍35‒36:149‒62.

[16] Thalamy P, Piranda B, Bourgeois J. Distributed self-reconfiguration using a deterministic autonomous scaffolding structure. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems; 2019 May 13‒17; Montreal, QC, Canada; 2019. p.140‒8. 链接1

[17] Carbon lattice innovation—the adidas story [Internet]. Redwood City: Carbon, Inc.; [cited 2021 Dec 20]. Available from: https://www.carbon3d.com/resources/whitepaper/the-adidas-story/. 链接1

[18] Li VCF, Kuang X, Hamel CM, Roach D, Deng Y, Qi HJ. Cellulose nanocrystals support material for 3D printing complexly shaped structures via multi-materials‒multi-methods printing. Addit Manuf 2019;28:14‒22. 链接1

[19] Senior JJ, Cooke ME, Grover LM, Smith AM. Fabrication of complex hydrogel structures using suspended layer additive manufacturing (SLAM). Adv Funct Mater 2019;29(49):1904845. 链接1

[20] Mao D, Li Q, Li D, Chen Y, Chen X, Xu X. Fabrication of 3D porous poly (lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Mater Des 2018;142:1‒10. 链接1

[21] Andre JC, Gallais L, inventors; MarseilleCentrale, Aix-Marseille University, French National Centre for Scientific Research, assignees. Method for producing a three-dimensional object by a multiphoton photopolymerization process, and associated device. WO/2019/186070. 2021 Mar 25. French.

[22] Loterie D, Delrot P, Moser C. High-resolution tomographic volumetric additive manufacturing. Nat Commun 2020;11(1):852. 链接1

[23] Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK. Volumetric additive manufacturing via tomographic reconstruction. Science 2019;363(6431):1075‒9. 链接1

[24] de Beer MP, van der Laan HL, Cole MA, Whelan RJ, Burns MA, Scott TF. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci Adv 2019;5(1):eaau8723. 链接1

[25] Moore DG, Barbera L, Masania K, Studart AR. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nat Mater 2020;19(2):212‒7. 链接1

[26] Mitchell A, Lafont U, Hołyń ska M, Semprimoschnig C. Additive manufacturing—a review of 4D printing and future applications. Addit Manuf 2018;24:606‒26. 链接1

[27] Wei X, Qiu S, Zhu L, Feng R, Tian Y, Xi J, et al. Toward support-free 3D printing: a skeletal approach for partitioning models. IEEE Trans Vis Comput Graph 2018;24(10):2799‒812. 链接1

[28] Xie Y, Chen X. Support-free interior carving for 3D printing. Vis Inform 2017;1(1):9‒15. 链接1

[29] Dai C, Wang CCL, Wu C, Lefebvre S, Fang G, Liu YJ. Support-free volume printing by multi-axis motion. ACM Trans Graph 2018;37(4):134. 链接1

[30] André JC. From additive manufacturing to 3D/4D printing: breakthrough innovations: programmable material, 4D printing and bio-printing. London: Wiley-ISTE; 2018. 链接1

[31] Momeni F, Hassani.N SMM, Liu X, Ni J. A review of 4D printing. Mater Des 2017;122:42‒79. 链接1

[32] Yuan C, Wang F, Qi B, Ding Z, Rosen DW, Ge Q. 3D printing of multi-material composites with tunable shape memory behavior. Mater Des 2020;193:108785. 链接1

[33] Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S. 4D printing and universal transformation. In: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture; 2014 Oct 23‒25; Los Angeles, CA, USA; 2014. p. 539‒48. 链接1

[34] Demaine ED, O’Rourke J. Geometric folding algorithms: linkages, origami, polyhedra. Cambridge: Cambridge University Press; 2007. 链接1

[35] Wagner MA, Huang JL, Okle P, Paik J, Spolenak R. Hinges for origami-inspired structures by multimaterial additive manufacturing. Mater Des 2020;191:108643. 链接1

[36] Demoly F, Dunn ML, Wood KL, Qi HJ, André JC. The status, barriers, challenges, and future in design for 4D printing. Mater Des 2021;212:110193. 链接1

[37] Sossou G, Demoly F, Belkebir H, Qi HJ, Gomes S, Montavon G. Design for 4D printing: a voxel-based modeling and simulation of smart materials. Mater Des 2019;175:107798. 链接1

[38] Sossou G, Demoly F, Belkebir H, Qi HJ, Gomes S, Montavon G. Design for 4D printing: modeling and computation of smart materials distributions. Mater Des 2019;181:108074. 链接1

[39] Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007. 链接1

[40] Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103(13):131901. 链接1

[41] Yuan C, Wang T, Dunn ML, Qi HJ. 3D printed active origami with complicated folding patterns. Int J Precis Eng Manuf Green Technol 2017;4(3):281‒9. 链接1

[42] Kwok TH, Wang CCL, Deng D, Zhang Y, Chen Y. Four-dimensional printing for freeform surfaces: design optimization of origami and kirigami structures. J Mech Des 2015;137(11):111413. 链接1

[43] Van Manen T, Janbaz S, Zadpoor AA. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz 2017;4(6):1064‒9. 链接1

[44] Jian B, Demoly F, Zhang Y, Gomes S. An origami-based design approach to selfreconfigurable structures using 4D printing technology. Proced CIRP 2019;84:159‒64. 链接1

[45] Lee AY, An J, Chua CK, Zhang Y. Preliminary investigation of the reversible 4D printing of a dual-layer component. Engineering 2019;5(6):1159‒70. 链接1

[46] Turner N, Goodwine B, Sen M. A review of origami applications in mechanical engineering. Proc Inst Mech Eng C J Mech Eng Sci 2016;230(14):2345‒62. 链接1

[47] Lang RJ, Miura K. The tree method of origami design. In: Miura K, editor. Origami science & art: Proceedings of the Second International Meeting of Origami Science and Scientific Origami. Otsu: Seian University of Art and Design; 1994. p. 73‒82.

[48] Firby PA, Gardiner CF. Surface topology. 3rd ed. Sawston: Woodhead Publishing Limited; 2001. 链接1

[49] Liu S, Li Q, Liu J, Chen W, Zhang Y. A realization method for transforming a topology optimization design into additive manufacturing structures. Engineering 2018;4(2):277‒85. 链接1

[50] West DB. Introduction to graph theory. 2nd ed. Upper Saddle River: Prentice hall; 2001.

[51] Hedetniemi SM, Cockayne EJ, Hedetniemi ST. Linear algorithms for finding the Jordan center and path center of a tree. Transport Sci 1981;15(2):98‒114. 链接1

[52] Yang XS. Multi-objective optimization. In: Nature-inspired optimization algorithms. Amsterdam: Elsevier; 2014. p. 197‒211. 链接1

[53] Jian B, Demoly F, Zhang Y, Gomes S. Towards a design framework for multifunctional shape memory polymer based product in the era of 4D printing. Smart materials, adaptive structures and intelligent systems. New York City: American Society of Mechanical Engineers; 2018. 链接1

[54] Wang Q, Tian X, Huang L, Li D, Malakhov AV, Polilov AN. Programmable morphing composites with embedded continuous fibers by 4D printing. Mater Des 2018;155:404‒13. 链接1

[55] Lee AY, An J, Chua CK. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 2017;3(5):663‒74. 链接1

[56] Dimassi S, Demoly F, Cruz C, Qi HJ, Kim KY, André JC, et al. An ontology-based framework to formalize and represent 4D printing knowledge in design. Comput Ind 2021;126:103374. 链接1



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有