证明函数收敛则有界(五篇) 您所在的位置:网站首页 1-2lnx图像 证明函数收敛则有界(五篇)

证明函数收敛则有界(五篇)

2023-04-22 08:55| 来源: 网络整理| 查看: 265

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

证明函数收敛则有界篇一

例1.设:a、b、c∈r,证明:a2acc23b(abc)0成立,并指出等号

何时成立。

解析:令f(a)a2(3bc)ac23b23bc

⊿=(3bc)24(c23b23bc)3(bc)

2∵b、c∈r,∴⊿≤0

即:f(a)0,∴a2acc23b(abc)0恒成立。

当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。

4例2.已知:a,b,cr且abc2,a2b2c22,求证: a,b,c0,。3

abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc

2∴⊿=(b2)24(b22b1)3b24b0,即:0b

4同理可求得a,c0, 34。

3② 构造函数逆用判别式证明不等式

对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2 由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。

例3.设a,b,c,dr且abcd1,求证:a14b14c14d1﹤6。

解析:构造函数:

f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)2

=8x22(4a14b14c14d1)x4.(abcd1)

由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dr且abc1,求

解析:构造函数f(x)(=(1axa)2(149的最小值。abc2xb)2(3cx)2 1492)x12x1,(abc1)abc

111由f(x)0(当且仅当a,b,c时取等号),632

149得⊿≤0,即⊿=144-4()≤0 abc

111149∴当a,b,c时,()min36 632abc

构造函数证明不等式

1、利用函数的单调性

+例

5、巳知a、b、c∈r,且a

求证: ama> bmb

[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不

等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。

ax+,其中x∈r,0

bxbabaf(x)==1-bxbx证明:令 f(x)=

∵b-a>0

ba+ 在r上为减函数 bx

ba+从而f(x)= 在r上为增函数 bx∴y=

∵m>0∴f(m)> f(0)∴ama> bmb

6、求证:ab

1ab≤ab

1ab(a、b∈r)

[分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。

[证明]令 f(x)=x,可证得f(x)在[0,∞)上是增函数(证略)1x

而0

得f(∣a+b∣)≤ f(∣a∣+∣b∣)

即: ab

1ab≤ab

1ab

[说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较

法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。

2、利用函数的值域

7、若x为任意实数,求证:—1x1≤≤ 221x

2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是

构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。1x222

x2证明:设 y=,则yx-x+y=0 21x

∵x为任意实数

22∴上式中δ≥0,即(-1)-4y≥0

411得:—≤y≤ 22

1x1∴—≤≤ 21x22∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。

另证:类比万能公式中的正弦公式构造三角函数更简单。

8、求证:必存在常数a,使得lg(xy)≤ 2xlg2y对大于1的任意x与y恒成立。

[分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最

大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。22证明:∵lgxlgy > 0(x>1,y>1)

∴原不等式可变形为:lga≥lgxlgy

lgxlgy2

22lgxlgy)2lgxlgy令 f(x)= == 222222lgxlgylgxlgylgxlgylgxlgy

22而 lgx>0,lgy>0,∴lgx+lgy ≥ 2lgxlgy > 0

∴2lgxlgy≤1 22lgxlgy

∴ 1

从而要使原不等式对于大于1的任意x与y恒成立,只需lga≥2即 a≥102即可。

故必存在常数a,使原不等式对大于1的任意x、y恒成立。

3、运用函数的奇偶性

xx

2xx 证明:设f(x)=-(x≠0)x122 例

9、证明不等式:

xxx2xx∵f(-x)=-= x+ x122212

xxx[1-(1-2)]+12x2

xx=-x+= f(x)x122=

∴f(x)的图象关于y轴对称

x∵当x>0时,1-2

当x

故当 x≠0时,恒有f(x)

即:xx

[小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。

证明函数收敛则有界篇二

构造可导函数证明不等式

◎李思阳本溪市机电工程学校 117022

【内容简要】构造辅助函数,把不等式证明转化为利用导数研究函数的单调性或最值,从而证得不等式。而如何构造一个可导函数,是用导数证明不等式的关键。本文从热门的高考题及模拟题中选出四种类型题供师生们参考。

【关键词】构造辅助函数;导数;不等式。

一.直接作差

1(2011·辽宁文科)设函数f(x)xax2blnx,曲线yf(x)过p(1,0),且在p点处的切线斜率为2.(1)求a,b的值;

(2)证明:f(x)2x2。

(1)解:f(x)=1+2ax1a0b.由已知条件得f(1)0,f(1)=2,即 x12ab2

解得a1。

b3

(2)证明:因为f(x)的定义域为(0,+∞),由(1)知f(x)xx23lnx。

设g(x)f(x)(2x2)=2xx3lnx,则g(x)=12x23(x1)(2x3)=。xx

当0<x<1时,g(x)>0,当x>1时,g(x)<0。

所以g(x)在(0,1)内单调递增,在(1,+∞)内单调递减。而g(1)=0,故当x>0时,g(x)≤0,即f(x)2x2。

总结:直接作差g(x)f(x)(2x2),用导数得gmax(x)g(1)=0,从而得证。直接作差是证这类题最常用的方法。

二.分离函数

2.(2011·课标全国卷文科)已知函数f(x)

处的切线方程为x2y30。

(1)求a,b的值;

(2)证明:当x>0,且x1时,f(x)>

(1)解:略a1,b1。alnxb,曲线yf(x)在点(1,f(1))x1xlnx。x1

lnx1lnx1x21,所以f(x)(2lnx)。(2)证明:由(1)知f(x)=x1xx11x2x

x21考虑函数h(x)=2lnx(x>0),则 x

22x2(x21)(x1)2

=。h(x)=22xxx

所以当x1时,h(x)<0,而h(1)0

当x∈(0,1)时,h(x)>0,可得,故 1h(x)>0; 21x

1h(x)>0。当x∈(1,+∞)时,h(x)<0,可得1x2

lnx从而当x>0,且x1时,f(x)>。x1

总结:作差后的函数如可分为两个函数的积,直接求导很繁,可取其中一个函数求导,再讨论证明。

三.巧妙变形

3.(2010·辽宁文科)已知函数f(x)(a1)lnxax21。

(1)讨论函数f(x)的单调性;

(2)设a2,证明:对任意x1,x2∈(0,+∞),f(x1)f(x2)4x1x2。解:(1)略。

(2)不妨设x1≥x2,由于a2,故f(x)在(0,+∞)减少。所以

f(x1)f(x2)4x1x2等价于f(x2)f(x1)≥x1-x2,即f(x2)x2≥f(x1)x1。

a12ax24xa12ax4=令g(x)f(x)x,则g(x)=。于是 xx

4x24x1(2x1)2

g(x)≤≤0。xx

从而g(x)在(0,+∞)单调减少,故g(x1)≤g(x2)。即f(x1)x1≤f(x2)x2,故,对任意x1,x2∈(0,+∞),f(x1)f(x2)4x1x2。

总结:通过等价变形,构造函数g(x),利用g(x)的单调性得证。

四.作函数积

12。exex

1212证明: 对任意的x(0,﹢∞),lnx1>xx(lnx1)>x(x)exexee

x2设函数f(x)=xlnxx,g(x)=x+。ee

111f(x)=lnx2,f(x)=0,得x2,易知fmin(x)=f(2)=—2。eee4.(2011·本溪一中模拟)对任意的x(0,﹢∞),求证:lnx1>

1exxex

,=0,得1,易知==。g(1)g(x)=g(x)g(x)xmaxee2x

11,∴fmin(x)>gmax(x),∴f(x)g(x)。ee2

x212∴xlnxxx+。因此lnx1>x。exeee∵

总结:直接做不好做,不等式两边同乘以一个函数,先进行证明,得到结果后再同除以这个函数,从而证得。

证明函数收敛则有界篇三

函数解答题-构造函数证明不等式 例1(2013年高考北京卷(理))设l为曲线c:ylnx在点(1,0)处的切线.x

(i)求l的方程;

(ii)证明:除切点(1,0)之外,曲线c在直线l的下方.【答案】解:(i)设f(x)lnx1lnx,则f(x).所以f(1)1.所以l的方程为2xx

yx1.(ii)令g(x)x1f(x),则除切点之外,曲线c在直线l的下方等价于

x21lnxg(x)0(x0,x1).g(x)满足g(1)0,且g(x)1f(x).x2

2当0x1时,x10,lnx0,所以g(x)0,故g(x)单调递减;

当x1时,x10,lnx0,所以g(x)0,故g(x)单调递增.所以,g(x)g(1)0(x0,x1).所以除切点之外,曲线c在直线l的下方.又解:g(x)0即x12lnx0变形为x2xlnx0,记h(x)x2xlnx,则x

12x2x1(2x1)(x1)h(x)2x1,xxx

所以当0x1时,h(x)0,h(x)在(0,1)上单调递减;当x1时,h(x)0,h(x)在(1,+∞)上单调递增.所以h(x)h(1)0.)

例2(2013年普通高等学校招生统一考试辽宁数学(理)试题(word版))已知函数fx1xe2xx3,gxax12xcosx.当x0,1时,2

1;1x(i)求证:1-xfx

(ii)若fxgx恒成立,求实数a取值范围.【答案】解:(1)证明:要证x∈[0,1]时,(1+x)e-2x≥1-x,只需证明(1+x)ex≥(1-x)ex.-

记h(x)=(1+x)ex-(1-x)ex,则h′(x)=x(ex-ex),当x∈(0,1)时,h′(x)>0,因此h(x)在[0,1]上是增函数,故h(x)≥h(0)=0.所以f(x)≥1-x,x∈[0,1].

要证x∈[0,1]时,(1+x)e

-2x

1≤ex≥x+1.1+x

记k(x)=ex-x-1,则k′(x)=ex-1,当x∈(0,1)时,k′(x)>0,因此k(x)在[0,1]上是增函数,故k(x)≥k(0)=0.所以f(x)≤,x∈[0,1].

1+x1

综上,1-x≤f(x)≤,x∈[0,1].

1+x(2)(方法一)

x

ax+1+2xcos x f(x)-g(x)=(1+x)e-2

-2x

x3

≥1-x-ax-1-2xcos x

2x

a+1++2cos x.=-x2

x2

设g(x)=2cos x,则g′(x)=x-2sin x.记h(x)=x-2sin x,则h′(x)=1-2cos x,当x∈(0,1)时,h′(x)<0,于是g′(x)在[0,1]上是减函数,从而当x∈(0,1)时,g′(x)<g′(0)=0,故g(x)在[0,1]上是减函数.于是g(x)≤g(0)=2.从而

a+1+g(x)≤a+3,所以,当a≤-3时,f(x)≥g(x)在[0,1]上恒成立.

下面证明,当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.

1x3

f(x)-g(x)≤1-ax-2xcos x

21+x-xx3

=ax--2xcos x

21+x

1x

=-x1+xa2+2cos x.

-11x21记i(x)=+a+2cos x=+a+g(x),则i′(x)=+g′(x).当x∈(0,21+x1+x(1+x)1)时,i′(x)<0.故i(x)在[0,1]上是减函数,于是i(x)在[0,1]上的值域为[a+1+2cos 1,a+

3].

因为当a>-3时,a+3>0,所以存在x0∈(0,1),使得i(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.

综上,实数a的取值范围是(-∞,-3].(方法二)

先证当x∈[0,1]时,1-x2≤cos x≤1-2.241

记f(x)=cos x-1+x2,则f′(x)=-sin x+x.22

记g(x)=-sin x+x,则g′(x)=-cos x+1,当x∈(0,1)时,g′(x)>0,于是g(x)在[0,1]上是增函数,因此当x∈(0,1)时,g(x)>g(0)=0,从而f(x)在[0,1]上是增函数,因此f(x)≥f(0)=0.所以

当x∈[0,1]时,12≤cos x.同理可证,当x∈[0,1]时,cos x≤1-2.411

综上,当x∈[0,1]时,1-x2≤cos x≤1-x2.24因为当x∈[0,1]时.

x

ax+1+2xcos x f(x)-g(x)=(1+x)e-2

-2x

1x3

1-2 ≥(1-x)-ax-1-2x42

=-(a+3)x.所以当a≤-3时,f(x)≥g(x)在[0,1]上恒成立.

下面证明,当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.因为 x

ax+1+2xcos x f(x)-g(x)=(1+x)e-2

-2x

11x3

1-x2 ≤1-ax-2x221+xx2x3

=(a+3)x 1+x2

x-a+3),≤x23

a+31所以存在x0∈(0,1)例如x0取中的较小值满足f(x0)<g(x0),即f(x)≥g(x)在[0,321]上不恒成立.

综上,实数a的取值范围是(-∞,-3].

例3(2012高考辽宁文21)(本小题满分12分)

设f(x)=lnx+x-1,证明: 3

(1)当x>1时,f(x)

(2)当1

x+5

【答案】解:(1)(证法一)

记g(x)=lnx+x-1-2(x-1).则当x>1时,113

g′(x)=x2,g(x)在(1,+∞)上单调递减.

2x又g(1)=0,有g(x)

f(x)

由均值不等式,当x>1时,x

令k(x)=lnx-x+1,则k(1)=0,k′(x)=x1

由①②得,当x>1时,f(x)

9x-1,由(1)得 x+5

1154

h′(x)=x2xx+52+xx+55454=2xx+54xx+5x+53-216x

=4xx+5令g(x)=(x+5)3-216x,则当1

9x-1

x+5(证法二)

记h(x)=(x+5)f(x)-9(x-1),则当1

-9 2x-1)+(x+5)x2x1

=2xx(x-1)+(x+5)(2+x)-18x]

x11

2x3xx-1+x+52+22-18x 1

=4xx2-32x+25)

因此h(x)在(1,3)内单调递减,又h(1)=0,所以h(x)

9x-1

.x+5

例4(2012高考浙江文21)(本题满分15分)已知a∈r,函数f(x)4x32axa(1)求f(x)的单调区间

(2)证明:当0≤x≤1时,f(x)+ 2a>0.【答案】

【解析】(1)由题意得f(x)12x22a,当a0时,f(x)0恒成立,此时f(x)的单调递增区间为,.当a

0时,f(x)12(x

此时函数f(x)的单调递增区间为x,.(2)由于0x1,当a2时,f(x)a24x32ax24x34x2.333

当a2时,f(x)a24x2a(1x)24x4(1x)24x4x2.设g(x)2x2x1,0x

1,则g(x)6x26(x则有

x.33

所以g(x)ming10.3

当0x1时,2x2x10.故f(x)a24x34x20.例5(2012高考山东文22)(本小题满分13分)

已知函数f(x)

lnxk

(k为常数,e=2.71828…是自然对数的底数),曲线yf(x)在点ex

(1,f(1))处的切线与x轴平行.(ⅰ)求k的值;

(ⅱ)求f(x)的单调区间;

(ⅲ)设g(x)xf(x),其中f(x)为f(x)的导函数.证明:对任意x0,g(x)1e2.1

lnxk【答案】(i)f(x),ex

由已知,f(1)

1k

0,∴k1.e

lnx1(ii)由(i)知,f(x).ex

设k(x)

lnx1,则k(x)20,即k(x)在(0,)上是减函数,xxx

由k(1)0知,当0x1时k(x)0,从而f(x)0,当x1时k(x)0,从而f(x)0.综上可知,f(x)的单调递增区间是(0,1),单调递减区间是(1,).(iii)由(ii)可知,当x1时,g(x)xf(x)≤0<1+e2,故只需证明g(x)1e2在0x1时成立.当0x1时,ex>1,且g(x)0,∴g(x)

1xlnxx

1xlnxx.x

e

设f(x)1xlnxx,x(0,1),则f(x)(lnx2),当x(0,e2)时,f(x)0,当x(e2,1)时,f(x)0,所以当xe2时,f(x)取得最大值f(e2)1e2.所以g(x)f(x)1e2.综上,对任意x0,g(x)1e2.

证明函数收敛则有界篇四

函数法证明不等式

已知函数f(x)=x-sinx,数列{an}满足0

证明0

证明an+1

3它提示是构造一个函数然后做差求导,确定单调性。可是还是一点思路都没有,各位能不能给出具体一点的解答过程啊?

(1)f(x)=x-sinx,f(x)=1-cosx

00,f(x)是增函数,f(0)

因为0

且an+1=an-sinan

(2)求证不等式即(1/6)an^3-an+1=(1/6)an^3-an+sinan>0①

构造函数g(x)=(1/6)x^3-x+sinx(0

g(x)=x-sinx,由(1)知g(x)>0,所以g(x)单增,g(x)>g(0)=0

所以g(x)单增且g(x)>g(0)=0,故不等式①成立

因此an+1

证毕!

构造分式函数,利用分式函数的单调性证明不等式

【例1】证明不等式:≥(人教版教材p23t4)

证明:构造函数f(x)=(x≥0)

则f(x)==1-在上单调递增

∵f(|a|+|b|)=f(|a+b|)=且|a|+|b|≥|a+b|

∴f(|a|+|b|)≥f(|a+b|)即所证不等式正确。

点评:本题还可以继续推广。如:求证:≥。利用分式函数的单调性可以证明的教材中的习题还有很多,如:

p14第14题:已知c>a>b>0,求证:

p19第9题:已知三角形三边的长是a,b,c,且m是正数,求证:

p12例题2:已知a,b,m,都是正数,且a

二、利用分式函数的奇偶性证明不等式

【例2】证明不等式:(x≠0)

证明:构造函数f(x)=

∵f(-x)=

=f(x)

∴f(x)是偶函数,其图像关于y轴对称。

当x>0时,

当x0,故f(x)=f(-x)

三、构造一次函数,利用一次函数的单调性证明不等式

【例3】已知|a|

∵|a|

∴-10

∴f(c)的(-1,1)上是增函数

∵f(1)=1-ab+a+b-2=a+b–ab-1=a(1-b)-(1-b)=(1-b)(a-1)

∴f(1)

∴a+b+c。

证明函数收敛则有界篇五

构造函数证明不等式

构造函数证明:>e的(4n-4)/6n+3)次方

不等式两边取自然对数(严格递增)有:

ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n+3)

不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1)

=ln2-ln1+lnn-ln(n+1)=ln

构造函数f(x)=ln-(4x-4)/(6x+3)

对f(x)求导,有:f(x)=+^

2当x>2时,有f(x)>0有f(x)在x>2时严格递增从而有

f(n)>=f(2)=ln(4/3)-4/15=0.02>0

即有ln>(4n-4)/(6n+3)

原不等式等证

【解】:

∏{n^2/(n^2-1)}>e^((4n-4)/(6n+3))

∵n^2/(n^2-1)=n^2/(n+1)(n-1)

∴∏{n^2/(n^2-1)}=2n/(n+1)

原式可化简为:2n/(n+1)>e^((4n-4)/6n+3))

构建函数:f(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数f’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2

∵e^((4n-4)/(6n+3))

∴f’(n)>0

而f=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0

所以f(n)>0

即:2n/(n+1)>e^((4n-4)/6n+3))

故得证。

一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式

例1若a,b,c∈r,且a≠0,又4a+6b+c>0,a-3b+c4ac.证明构造函数f(x),设f(x)=ax2+3bx+c(a≠0),由f(2)=4a+6b+c>0,f(-1)=a-3b+c

根据勘根定理可知:f(x)在区间(-1,2)内必有零点.又f(x)为二次函数,由勘根定理结合可知:

f(x)必有两个不同的零点.令ax2+3bx+c=0可知△=(3b)2-4ac>0,所以可得:9b2>4ac.命题得证.评析本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决.二、结合构造函数的单调性证明不等式

例2(2005年人教a版《选修4-5不等式选讲》例题改编)已知a,b,c是实数,求证:

|a+b+c|1+|a+b+c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.证明构造函数f(x),设f(x)=x1+x(x≥0).由于f′(x)=1(1+x)2,所以结合导数知识可知f(x)在[0,+∞)上是增函数.∵0≤|a+b+c|≤|a|+|b|+|c|,∴f(|a+b+c|)≤f(|a|+|b|+|c|),即|a+b+c|1+|a+b+c|≤|a|+|b|+|c|1+|a|+|b|+|c|=|a|1+|a|+|b|+|c|+|b|1+|a|+|b|+|c|+|c|1+|a|+|b|+|c|≤|a|1+|a|+|b|1+|b|+|c|1+|c|.命题得证.三、结合构造函数在某个区间的最值证明不等式

例3(第36届imo试题)

设a,b,c为正实数,且满足abc=1,求证:

1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.证明构造函数,设f(a,b,c)=1a3(b+c)+1b3(c+a)+1c3(a+b),显然a=b=c=1时,f(a,b,c)=32≥32成立.又abc=1,a,b,c为正实数,则a,b,c中必有一个不大于1,不妨设0f(a,b,c)-f(a,1,c)=(1-b)1a3(b+c)(1+c)+1+b+b2b3(a+c)+1c3(a+b)(1+a)≥0,∴f(a,b,c)≥f(a,1,c),因此要证f(a,b,c)≥32,只要证f(a,1,c)≥32,此时ac=1,∴a,1,c成等比数列,令a=q-1,c=q(q>0).f(a,1,c)=q31+q+qq2+1+1q2(1+q)

=q5+1q2(1+q)+qq2+1

=(q4+1)-(q3+q)+q2q2+qq2+1

=(q2+q-2)-(q+q-1)+1q+q-1+1

=t2-t+1t-1.(其中t=q+q-1,且t≥2).由导数知识(方法同例

2、例3)可知函数

f(a,1,c)=t2-t+1t-1(t≥2)是增函数,当且仅当t=2q=1a=c=1时,(f(a,1,c))min=22-2+12-1=32成立,∴f(a,1,c)≥32.故f(a,b,c)≥f(a,1,c)≥32.命题得证。



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有